98%
921
2 minutes
20
The global water and energy crisis seems to be mitigated with promising prospects of emerging interdisciplinary hybrid solar-driven evaporator technology (IHSE). However, the lack of numeric standards for comparison between enormously reported systems and the synergistic effects of interdisciplinary hybridization remains a significant challenge. To entice researchers from various domains to collaborate on the design of a system for realistic, large-scale applications, this study provides a comprehensive overview of the interdisciplinary approaches to IHSE from the domains of physics, chemistry, materials science, and engineering, along with their guiding principles and underlying challenges. First, an in-depth analysis of IHSE with the basic scientific foundations and current advancements in recent years is discussed. Then, the physical principles/scientific principles alongside the overall system improvement enhancement techniques at the macro and micro scale are highlighted. Furthermore, the review analyzes the impact of significant physical factors that alter or restrict the efficiency of IHSE, as well as their connection and potential regulation. In addition, a comprehensive study of emerging sustainable applications for insight into the design and optimization of IHSE is provided for scientists from different fields. Lastly, the current challenges and future perspectives of interdisciplinary IHSE for large-scale applications are emphasized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202407280 | DOI Listing |
J Am Chem Soc
September 2025
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Incorporating atomically thin two-dimensional (2D) materials with optical fibers expands their potential for optoelectronic applications. Recent advancements in chemical vapor deposition have enabled the batch production of these hybrid fibers, paving the way for practical implementation. However, their functionality remains constrained by the integration of a single 2D material, restricting their versatile performance.
View Article and Find Full Text PDFJ Sleep Res
September 2025
Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy.
Obstructive Sleep Apnea is a prevalent condition linked to various health issues, including cardiovascular disease and cognitive decline. This systematic review evaluates the comparative efficacy and patient adherence of two primary treatment modalities: Continuous Positive Airway Pressure and Mandibular Advancement Devices. This review incorporates studies from 2004 to 2024, applying Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and focusing on randomised controlled trials.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Department of Computer Science and Engineering, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India.
Deepfakes pose critical threats to digital media integrity and societal trust. This paper presents a hybrid deepfake detection framework combining Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs) to address challenges in scalability, generalizability, and adversarial robustness. The framework integrates adversarial training, a temporal decay analysis model, and multimodal detection across audio, video, and text domains.
View Article and Find Full Text PDFEcol Evol
September 2025
Aquatic Systems Biology Unit TUM School of Life Sciences, Technical University of Munich Freising Germany.
Historically, the thick-shelled river mussel ( agg. complex) was considered a single, widespread species across Europe. However, recent phylogenetic taxonomic revisions have delineated 12 species from this complex, including (s.
View Article and Find Full Text PDFNanoscale
September 2025
School of Chemical Engineering, Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
Electronic capacitor films based on polymer matrices and inorganic nanofillers capable of storing more energy play a crucial role in advanced modern electrical industries and devices. Herein, a series of nanocomposite films composed of "core-shell-dot" BNNs-PDA@Ag hybrid structures with multiple breakdown strength enhancement mechanisms as fillers and methyl methacrylate--glycidyl methacrylate (MG) copolymers as matrices were successfully synthesized. The introduced 2D and wide-bandgap BNNs not only enhanced the breakdown strength by taking advantage of their excellent physical properties, but also further improved their energy storage properties both at ambient and elevated temperatures through the formation of deeper traps at the organic-inorganic interface.
View Article and Find Full Text PDF