98%
921
2 minutes
20
The inefficient charge separation and transport remains a bottleneck in photocatalysis. While various strategies have been explored to improve this process, most focus on single-sided modulation either the conduction-band electrons or valence-band holes, limiting overall improvement. Herein, an innovative coupling modification approach is adopted where Ru and α-FeO (FO) nanoparticles are integrated onto ZnInS (ZIS) to prepare Ru/ZnInS/α-FeO, and constructs dual charge transfer pathways for electrons and holes. This bidirectional channel configuration significantly enhances carrier separation and accumulation, enabling Ru as an electron (e) mediator and FO as a hole (h) extraction facilitator, driving simultaneous redox reactions, and enabling substantial improvement in the photocatalytic sulfur oxidation process coupled with hydrogen generation. This approach enhances interface charge separation/spatial accumulation and provides valuable guidance for designing and developing advanced high-efficiency photocatalytic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2025.02.079 | DOI Listing |
Org Lett
September 2025
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.
A novel copper-catalyzed radical cross-coupling reaction for the thioesterification of polyfluoroarenes is developed using KS and aldehydes in water. This protocol employs a readily available KS as a sulfur source, eliminating the need for hazardous thiols and organic solvents. The mild reaction conditions are compatible with a wide range of functional groups, providing access to diverse polyfluoroaryl thioesters.
View Article and Find Full Text PDFSmall
September 2025
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia.
Plastic waste continues to be a major environmental challenge, worsened by energy-intensive conventional recycling methods that require highly pure feedstocks. In this review, emerging electrochemical upcycling technologies are critically examined, focusing on the electro-oxidation transformation of polyethylene terephthalate (PET) into valuable chemical products. Key reaction pathways and target products are outlined to clarify the selective electrochemical reforming of PET.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China.
Photocatalysis holds significant promise for the reduction of CO to valued chemicals under mild conditions. However, its potential is severely limited by weak CO adsorption and slow proton-coupled electron transfer (PCET) rates. In this work, ZnInS-based catalysts with varying hydroxyl contents were synthesized via the solvothermal method.
View Article and Find Full Text PDFChemistry
September 2025
Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany.
Iron-based photocatalysis has emerged as a sustainable and versatile platform for facilitating a wide range of chemical transformations, offering an appealing alternative to precious metal photocatalysts. Among the various activation modes, ligand-to-metal charge transfer (LMCT)-driven homolysis of Fe(III)-L(ligand) bonds has garnered considerable attention due to its ability to generate reactive radical species under mild conditions, without requiring the matching of substrates' redox potentials. In this review, we present a comprehensive overview of recent developments in LMCT-driven iron photocatalysis, with a particular focus on both mechanistic insights and synthetic applications published in the last five years.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Mi
Ammonia oxidation reaction (AOR) is critical for efficient ammonia utilization as a hydrogen carrier, yet state-of-the-art Pt-based catalysts suffer significant activity loss due to strong NO species (NO, NO) adsorption. Herein, Pd@Pt mesoporous core-shell nanospheres with interstitial Co in Pt shell (Pd@Pt-Co MCSN) are demonstrated as an excellent AOR electrocatalyst, which achieves a mass activity of 293.6 A g at 0.
View Article and Find Full Text PDF