98%
921
2 minutes
20
Given the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (Her-2) in triple-negative breast cancer (TNBC) cells, the efficacy of targeted therapies is limited. In this study, we uncovered that triptolide (TP) effectively suppresses the migration and invasiveness of MDA-MB-231 cells by activating autophagic pathways. Western blotting analysis revealed that TP significantly reduced the expression levels of p62 protein, while simultaneously markedly increasing the expression levels of LC3B-II, BNIP3, BNIP3L, ATG5, and ULK1 proteins, strongly suggesting an enhancement of autophagic activity in the cells. Based on PCR array screening, we identified the ACER1 gene as exhibiting notable expression alterations post-TP treatment. Overexpression of ACER1 gene enhanced the TP-induced apoptosis in MDA-MB-231 cells and augmented the regulation of autophagy-related proteins p62 and LC3B-II, leading to an increase in autophagosome numbers and a marked reduction in cellular migration and invasiveness. Conversely, ACER1 gene knockdown reversed these effects. In vivo experiments demonstrated that TP effectively inhibits the growth of MDA-MB-231 xenograft tumors, concurrently upregulating ACER1 and LC3B-II expression in tumor tissues, while p62 protein levels were notably decreased. Hematoxylin and eosin (H&E) staining results indicated no evident toxicity in liver and kidney tissues of BALB/c mice at a TP dose of 0.4 mg/kg. This study, for the first time, elucidates a novel mechanism by which TP inhibits TNBC through an autophagic process mediated by ACER1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prp.2025.155823 | DOI Listing |
BMC Med Genomics
July 2025
Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China.
Background: Psoriasis is an inflammatory disorder characterized by scaly erythematous plaques and significant comorbidities. Recent studies have suggested that impaired mitophagy, the cellular mechanism for removing dysfunctional mitochondria, may contribute to the pathogenesis of psoriasis.
Methods: In this study, we analyzed bulk RNA sequencing data from 167 healthy individuals and 177 patients with psoriasis obtained from the Gene Expression Omnibus database (GSE30999 and GSE54456).
J Allergy Clin Immunol
September 2025
Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands. Electronic address:
Background: In atopic dermatitis (AD), epidermal disease hallmarks are driven by a complex cutaneous inflammatory milieu that varies between patients. How these variable inflammatory signals affect cellular and molecular epidermal AD phenotypes is difficult to study in vivo.
Objective: We aimed to unravel which AD-associated cytokines drive specific epidermal disease hallmarks.
Pathol Res Pract
February 2025
Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, Guilin 541001, China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin 541001, China; Guangxi Health Commission Key
Given the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (Her-2) in triple-negative breast cancer (TNBC) cells, the efficacy of targeted therapies is limited. In this study, we uncovered that triptolide (TP) effectively suppresses the migration and invasiveness of MDA-MB-231 cells by activating autophagic pathways. Western blotting analysis revealed that TP significantly reduced the expression levels of p62 protein, while simultaneously markedly increasing the expression levels of LC3B-II, BNIP3, BNIP3L, ATG5, and ULK1 proteins, strongly suggesting an enhancement of autophagic activity in the cells.
View Article and Find Full Text PDFDiabet Med
July 2025
Department of Biomolecular Pharmacology, Hoshi University, Tokyo, Japan.
Aims: Skin disorders occur more frequently with sodium-dependent glucose cotransporter type 2 (SGLT2) inhibitors than with other antidiabetic drugs. We conducted basic research using ipragliflozin, with the aim of identifying new measures to prevent skin disorders caused by SGLT2 inhibitors.
Methods: db/db type 2 diabetes model mice were orally administered ipragliflozin (10 mg/kg or 30 mg/kg) once a day for 28 days and skin function genes were analysed by real-time RT-PCR or Western blotting.
Microb Cell Fact
November 2024
Low-Carbon Transition R&D Department, Korea Institute of Industrial Technology (KITECH), Research Institute of Sustainable Development Technology, Cheonan, 31056, Republic of Korea.
Background: Sphingosine-1-phosphate (S1P) is a multifunctional sphingolipid that has been implicated in regulating cellular activities in mammalian cells. Due to its therapeutic potential, there is a growing interest in developing efficient methods for S1P production. To date, the production of S1P has been achieved through chemical synthesis or blood extraction, but these processes have limitations such as complexity and cost.
View Article and Find Full Text PDF