Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat. This study comprehensively analyzed the in Tartary buckwheat. Based on the genome data of Tartary buckwheat, five genes, namely to , were identified on three chromosomes, exhibiting about 1800 bp lengths in their CDSs and numerous exons and introns in gene structures. Amino acid analyses revealed high homology in ten GBSS proteins from Tartary buckwheat, rice, maize, and , with a specific starch synthase catalytic domain and ten conserved motifs. The Tartary buckwheat GBSS proteins had a closer relationship with GBSS proteins from monocot based on evolutionary relationship analysis. Expression analyses suggested that the genes showed distinct tissue-specific expression patterns in Tartary buckwheat and rice-Tartary buckwheat. Among them, , , and were higher expressed in the root, stem, or flower, suggesting that they have a role in the amylose synthesis of these tissues. Notably, and were more highly expressed in seeds than in other tissues, suggesting that they have a pivotal role in amylose synthesis of the seeds of Tartary buckwheat. Furthermore, the cis acting elements in the promoters of and their binding transcription factors (TFs) were investigated. A protein-protein interaction network was constructed and co-expression was analyzed based on the gene expression patterns of the , and the identified TFs, belonging to bZIP, ERF, bHLH, and MADS-box TF families, were identified within this network, and their expression patterns were significantly correlated to the expression patterns of two seed-specific genes ( and ). Finally, was successfully transformed into rice through transgenic manipulation, and the overexpression lines showed an increase in amylose content accompanied by a reduction in amylopectin and total starch contents compared with WT. Overall, this research not only deepens our understanding of the molecular mechanisms of amylose synthesis in Tartary buckwheat, but also provides scientific insights for enhancing crop amylose content and quality through molecular breeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768976PMC
http://dx.doi.org/10.3390/plants14020203DOI Listing

Publication Analysis

Top Keywords

tartary buckwheat
40
expression patterns
16
starch synthase
12
amylose content
12
gbss proteins
12
amylose synthesis
12
buckwheat
11
tartary
10
amylose
9
granule-bound starch
8

Similar Publications

The growing consumer interest in functional and health-oriented foods prompted the incorporation of tartary buckwheat sprout flour (TBSF) into food production. The addition of TBSF enhanced the nutritional value of noodles. Research has shown that as the proportion of TBSF increased, both the water absorption rate and thermal stability of the dough improved, while formation time decreased and dough aging was inhibited.

View Article and Find Full Text PDF

Tartary buckwheat hulls, a phenolic-rich by-product of buckwheat processing, offer great potential for resource utilization. In this study, ultrasound-assisted enzymatic extraction with two temperatures (40 °C and 50 °C) was employed to obtain phenolics from Tartary buckwheat hulls. Compared with the traditional extraction method (207 mg/100 g), ultrasound-assisted enzymatic extraction increased the total phenolic yield by 91.

View Article and Find Full Text PDF

Introduction: Yield improvement of Tartary buckwheat is primarily hindered by the lack of effective cultivation practices. Understanding the effects of improved cultivation practices (ICPs) on the yield and economic benefits is of great importance for high-yield cultivation and resources efficient utilization of Tartary buckwheat.

Methods: A two-season field experiment was conducted on Tartary buckwheat variety Jinqiao 2 using six cultivation practices, including no nitrogen application (0 N), local farmers' practice (LFP, CK), and four ICPs consisting of improved practice of increased planting density with reduced nitrogen application (ICP1), the same practices as ICP1 but with moderate tillage depth (ICP2), the same practices as ICP1 but with deep tillage depth (ICP3), and the same practices as ICP3 but with rice straw returning (ICP4).

View Article and Find Full Text PDF

Multi-environment evaluation and identification of Tartary buckwheat (Fagopyrum tataricum Gaertn.) genotypes for superior agronomic and nutritional potential in the North-Western Himalayas.

Sci Rep

August 2025

Department of Genetics and Plant Breeding, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, 176062, India.

Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) is an important underutilized coarse cereal, grown for its excellent nutritional, health value and therapeutic effects. Despite its growing demand, there are limited studies that have focused on its genotypic variability and genotype-environmental interaction (GEI), particularly in the North-Western Himalayas.

View Article and Find Full Text PDF