98%
921
2 minutes
20
Nucleic acid aptamers are single-stranded oligonucleotides that are selected through exponential enrichment (SELEX) technology from synthetic DNA/RNA libraries. These aptamers can specifically recognize and bind to target molecules, serving as specific recognition elements. Surface-enhanced Raman scattering (SERS) spectroscopy is an ultra-sensitive, non-destructive analytical technique that can rapidly acquire the "fingerprint information" of the measured molecules. It has been widely applied in qualitative and trace analysis across various fields, including food safety, environmental monitoring, and biomedical applications. Small molecules, such as toxins, antibiotics, and pesticides, have significant biological effects and are harmful to both human health and the environment. In this paper, we mainly introduced the application and the research progress of SERS detection with aptamers (aptamer-based SERS techniques) in the field of small-molecule detection, particularly in the analysis of pesticide (animal) residues, antibiotics, and toxins. And the progress and prospect of combining the two methods in detection were reviewed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764255 | PMC |
http://dx.doi.org/10.3390/bios15010029 | DOI Listing |
Small
September 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder marked by cognitive decline and the accumulation of amyloid-β (Aβ) plaques, with current treatments offering only limited efficacy. Targeted photo-oxygenation of Aβ using small-molecule photosensitizers has emerged as a promising strategy to modulate amyloid aggregation and mitigate associated toxicity. In this work, the rational design and synthesis of donor-engineered, benzimidazole-functionalized aggregation-induced emission (AIE) photosensitizer with optimized photophysical and morphological properties for multimodal theranostic applications in AD is analyzed and reported.
View Article and Find Full Text PDFIBRO Neurosci Rep
December 2025
Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China.
Objective: Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized pathologically by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a significant decline in striatal dopamine levels. This study aims to systematically analyze alterations in striatal metabolites across different stages of PD to identify potential biomarkers, elucidate pathological mechanisms, and explore therapeutic targets.
Methods: A total of 72 mice were divided into six groups, including one control group and five PD model groups (W1-W5, representing distinct stages based on the duration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid induction).
Anal Chim Acta
November 2025
Department of Obstetrics, The Second Hospital of Shandong University, Jinan, 250033, PR China. Electronic address:
Background: Sulfur dioxide (SO) is recognized as a major atmospheric pollutant and its excessive emissions can pose a great threat to the environment, flora and fauna, and human health. Long-term exposure to excessive SO can cause chronic poisoning, leading to neurological disorders and cardiovascular diseases. However, there are two sides to everything.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China. Electronic address:
Background: Daminozide is a commonly utilized plant growth regulator. Both daminozide and its hydrolysis product, 1,1-dimethyl hydrazine ((CH)NNH), exhibit carcinogenic and teratogenic toxicity. Accurate detection of daminozide in food is of great significance to human health.
View Article and Find Full Text PDFCell
September 2025
Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg 69117, Germany; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Metabolomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Baden-Württe
Single-cell metabolomics (SCM) promises to reveal metabolism in its complexity and heterogeneity, yet current methods struggle with detecting small-molecule metabolites, throughput, and reproducibility. Addressing these gaps, we developed HT SpaceM, a high-throughput SCM method combining cell preparation on custom glass slides, small-molecule matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (MS), and batch processing. We propose a unified framework covering quality control, characterization, structural validation, and differential and functional analyses.
View Article and Find Full Text PDF