98%
921
2 minutes
20
Heat stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of heat resistance in rice. U2AF (U2 snRNP auxiliary factor) is an essential splicing complex with critical roles in recognizing the 3'-splice site of precursor messenger RNAs (pre-mRNAs). The U2AF small subunit (U2AF35) can bind to the 3'-AG intron border and promote U2 snRNP binding to the branch-point sequences of introns through interaction with the U2AF large subunit (U2AF65). However, the functions of U2AF35 in plants are poorly understood. In this study, we discovered that the OsU2AF35a gene was vigorously induced by heat stress and could positively regulate rice thermotolerance during both the seedling and reproductive growth stages. OsU2AF35a interacts with OsU2AF65a within the nucleus, and both of them can form condensates through liquid-liquid phase separation (LLPS) following heat stress. The intrinsically disordered regions (IDR) are accountable for their LLPS. OsU2AF35a condensation is indispensable for thermotolerance. RNA-seq analysis disclosed that, subsequent to heat treatment, the expression levels of several genes associated with water deficiency and oxidative stress in osu2af35a-1 were markedly lower than those in ZH11. In accordance with this, OsU2AF35a is capable of positively regulating the oxidative stress resistance of rice. The pre-mRNAs of a considerable number of genes in the osu2af35a-1 mutant exhibited defective splicing, among which was the OsHSA32 gene. Knocking out OsHSA32 significantly reduced the thermotolerance of rice, while overexpressing OsHSA32 could partially rescue the heat sensitivity of osu2af35a-1. Together, our findings uncovered the essential role of OsU2AF35a in rice heat stress response through protein separation and regulating alternative pre-mRNA splicing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933845 | PMC |
http://dx.doi.org/10.1111/pbi.14587 | DOI Listing |
Physiol Rep
September 2025
Department of Human Physiology, University of Oregon, Eugene, Oregon, USA.
We evaluated the systemic cardiovascular and carotid baroreflex support of arterial pressure during recovery from whole-body, passive heating in young and older adults. Supine mean arterial pressure (MAP), cardiac output (Q; acetylene washin), systemic vascular conductance (SVC), heart rate (HR), and stroke volume (SV) were evaluated in 16 young (8F, 18-29 years) and nine older (6F, 61-73 years) adults at normothermic baseline and for 60-min passive heating and 120-min normothermic recovery. Externally applied neck pressure was used to evaluate HR, brachial vascular conductance, and MAP responses to carotid baroreceptor unloading.
View Article and Find Full Text PDFPhysiol Rep
September 2025
Department of Sports Medicine, Japan Institute of Sports Sciences, Kita-ku, Tokyo, Japan.
Among the different forms of hydrotherapy, carbon dioxide (CO) water immersion improves peripheral vasodilation and blood flow compared with tap water immersion; however, the heat stress placed on the body through CO water immersion and the appropriate immersion protocols are uncertain. Therefore, this study aimed to compare the thermoregulatory responses during CO and tap water immersions. The participants were 10 male college baseball players.
View Article and Find Full Text PDFPlant Sci
September 2025
Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, China. Electronic address:
Rapid alkalinization factors (RALFs) are cysteine-rich signaling peptides in plants that play critical roles in development, immune regulation, and responses to abiotic stress. Despite their importance, the functional characterization of RALF family members in Tartary buckwheat (Fagopyrum tataricum), a nutrient-rich crop known for its remarkable resilience to multiple stresses, remains largely unexplored. In this study, we conducted a comprehensive genome-wide analysis to identify and characterize the FtRALF gene family in Tartary buckwheat, examining their phylogenetic relationships, gene structures, and duplication events.
View Article and Find Full Text PDFJ Therm Biol
September 2025
Department of Animal and Diary Sciences, University of Wisconsin, Madison, USA.
Owing to the anti-inflammatory and anti-oxidant benefits of Saccharomyces cerevisiae (SC), 20 mature male albino rats, assigned into four groups (A-D; n = 5), were used to investigate its ameliorative effects on heat stress-induced testicular and humoral alterations. Group A rats were neither treated with SC nor exposed to heat [-SC, -HS]. Group B rats were treated with 7 mg/kg of SC, but were not exposed to heat [+SC, -HS].
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China. Electronic address:
As global climate change intensifies heat stress and threatens food security, exploring and utilizing valuable genetic resources are crucial for crop improvement. Zygophyllum xanthoxylum, a xerophyte adapted to extreme desert conditions, is a valuable model for excavating thermotolerance genes. This species exhibits differential expression of numerous WRKY genes under heat treatments.
View Article and Find Full Text PDF