98%
921
2 minutes
20
Herein, novel thiazolo[4,5-]quinoxalin-2-ones 2-6 and thiazolo[4,5-]quinoxalin-2(3)-imines 7-9 were synthesized and characterized using elemental analysis, IR spectroscopy, and H/C NMR to confirm their structures. The efficacy of the newly designed thiazolo-quinoxalines 2, 3, 4, 5, 7, 8, and 9 against the cotton leafworm (2nd and 4th instar larvae) was evaluated, and results revealed insecticidal activity with variable and good mortality percentages. A SAR study was also discussed. Additionally, compound 3 exhibited the highest insecticidal activity, with mortality% values ranging from 86% ± 7.21% to 97% ± 1.52% and from 66.00% ± 6.24% to 86.33% ± 6.90% at concentrations of 625-2500 mg L against the 2nd and 4th instar larvae, respectively. The probit analysis revealed that the thiazolo[4,5-]quinoxalin-2(3)-one derivative 3, after 5 days of treatment, exhibited LC values of 141.02 and 366.73 mg L for the 2nd and 4th instar larvae, respectively. The LT values ranged from 0.52 to 1.92 days for the 2nd larval instar and from 1.95 to 2.47 days for the 4th larval instar. The corresponding toxicity index (TI) values were 86.21% for the 2nd instar and 78.47% for the 4th instar larvae. The mode of action of compound 3 was assessed through physiological, histological, and SEM analyses on the 4th larval instar. The physiological bioassay revealed a significant increase in total carbohydrate and protein levels compared to the control group. However, the enzymatic study showed a significant decrease ( < 0.05) in the levels of aspartate aminotransferase (AST/GOT), alanine aminotransferase (ALT/GPT), and alkaline phosphatase (AlP), while acetylcholinesterase (AChE) levels significantly increased. SEM analysis revealed malformations in the external body, while histological examination demonstrated severe damage to the gut epithelium and regenerative cells in the midgut tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736854 | PMC |
http://dx.doi.org/10.1039/d4ra08096c | DOI Listing |
Pestic Biochem Physiol
November 2025
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100
The insect midgut peritrophic membrane (PM) plays important roles in insect-microbe interactions. Bacillus thuringiensis (Bt) and its proteinaceous toxins are widely used for insect control. To understand the role of PM in insects against Bt toxins, this study selected Grapholita molesta Busck (Lepidoptera: Tortricidae), a worldwide pest infesting fruit trees, as the research subject.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Inst
The molecular mechanism of baculovirus infection is the basis of baculovirus wide application. Identifying and elucidating the functional genes of virus replication is the focus of research. Eukaryotic initiation factor 4E (eIF4E) is a key component of the translation initiation process to synthesize proteins required for replication.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Synthetic Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China.
Glutamine: fructose-6-phosphate aminotransferase (GFAT) is the first rate-limiting enzyme in the hexosamine biosynthetic pathway, which plays a crucial role in various biological processes, including chitin metabolism in insects. Locusta migratoria, a widespread and highly destructive agricultural pest, poses a significant threat due to its rapid reproduction and long-distance migration. In this study, we identified and characterized LmGFAT as a key regulator of locust development.
View Article and Find Full Text PDFBull Entomol Res
August 2025
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China.
has evolved resistance to many biological insecticides, resulting in significant annual agricultural and economic losses. Glutathione -transferases (GSTs) are one of the major insect detoxification enzyme systems. However, the detoxification metabolism of GSTs in against biological insecticides remains poorly understood.
View Article and Find Full Text PDFSci Rep
August 2025
ICAR-National Research Centre on Litchi, Mushahari, Muzaffarpur, Bihar, 842002, India.
The Litchi stink bug, Tessaratoma javanica (Thunberg) (Hemiptera: Tessaratomidae), is a major insect pest of litchi in India. Insect-associated bacteria play significant roles in their growth and development. We studied the bacterial communities linked to T.
View Article and Find Full Text PDF