Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The strong influence of surface adsorbates on the morphology of a catalyst is exemplified by studying a silver surface with and without deposited zinc oxide nanoparticles upon exposure to reaction gases used for carbon dioxide hydrogenation. Ambient pressure X-ray photoelectron spectroscopy and scanning tunneling microscopy measurements indicate accumulation of carbon deposits on the catalyst surface at 200 °C. While oxygen-free carbon species observed on pure silver show a strong interaction and decorate the atomic steps on the catalyst surface, this decoration is not observed for the oxygen-containing species observed on the silver surface with additional zinc oxide nanoparticles. Annealing the sample to temperatures above 350 °C removes the contaminants by hydrogenation to methane.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr03766aDOI Listing

Publication Analysis

Top Keywords

zinc oxide
12
oxide nanoparticles
12
carbon dioxide
8
dioxide hydrogenation
8
silver surface
8
catalyst surface
8
species observed
8
carbon
5
surface
5
influence zinc
4

Similar Publications

The utilization of plant extracts in combination with various nanomaterials for treating polymicrobial wound infections represents a novel approach in overcoming the problem of antimicrobial resistance through its multi-targeted mechanism of action. The present study investigates the potential of plant extract for the green synthesis of AgZnO bimetallic nanoparticles (BMNPs). The nanoparticles obtained were characterized and the UV-Vis studies demonstrated peaks at 361 and 371 nm which were characteristic of silver and zinc oxide nanoparticles while a size range of 5-15 nm was revealed in the HR TEM studies, and the presence of crystalline ZnO and surface decorated Ag nanoparticles was observed in the diffraction patterns.

View Article and Find Full Text PDF

Chronic wounds are a foremost cause of death, affecting 6.5 million people annually. Traditional treatments, such as metal-based formulations and biomaterials, are ineffective due to their toxicity and the rising incidence of chronic wound cases, necessitating the advancement of new therapies for efficient wound healing.

View Article and Find Full Text PDF

Prolonged or excessive inflammation may lead to impaired vascularization and bone regeneration, hindering the normal repair process of bone tissue. Although the regulation of inflammation is crucial for promoting a conducive microenvironment for bone regeneration, individual anti-inflammatory interventions frequently are inadequate in facilitating effective bone repair. Here, a multifunctional hydrogel (GelMA-ZC-Yoda1) with multifaceted therapeutic strategy was designed by integrating Zinc/Cerium-layered double oxide nanozyme (ZnCe-LDO, with catalase-like activity) and Yoda1 (an activator of the mechanically sensitive Piezo1 ion channel) into photocurable GelMA hydrogel.

View Article and Find Full Text PDF

Introduction: Chemotherapy faces limitations such as toxicity and resistance, necessitating novel cancer treatments. Green-synthesized zinc oxide nanoparticles (ZnO-NPs) have attracted attention for their safety, biocompatibility, and therapeutic potential. This study investigates the anticancer efficacy of ZnO-NPs synthesized using the extracellular matrix of Aspergillus biplanus against colorectal cancer cell lines (HCT-116).

View Article and Find Full Text PDF