Publications by authors named "Paolo Piseri"

Tracking the multifarious ultrafast electronic and structural changes occurring in a molecule during a photochemical transformation is a challenging endeavor that benefits from recent experimental and computational progress in time-resolved techniques. Measurements of valence electronic states, which provide a global picture of the bonding structure of the molecule, and core electronic states, which provide insight into the local environment, traditionally require different approaches and are often studied separately. Here, we demonstrate that X-ray pulses from a seeded free-electron laser (FEL) enable the measurement of high-resolution, time-resolved X-ray photoelectron spectra (XPS) that capture weak satellite states resulting from shake-down processes in a valence-excited molecule.

View Article and Find Full Text PDF

The strong influence of surface adsorbates on the morphology of a catalyst is exemplified by studying a silver surface with and without deposited zinc oxide nanoparticles upon exposure to reaction gases used for carbon dioxide hydrogenation. Ambient pressure X-ray photoelectron spectroscopy and scanning tunneling microscopy measurements indicate accumulation of carbon deposits on the catalyst surface at 200 °C. While oxygen-free carbon species observed on pure silver show a strong interaction and decorate the atomic steps on the catalyst surface, this decoration is not observed for the oxygen-containing species observed on the silver surface with additional zinc oxide nanoparticles.

View Article and Find Full Text PDF

Collinear double-pulse seeding of the High-Gain Harmonic Generation (HGHG) process in a free-electron laser (FEL) is a promising approach to facilitate various coherent nonlinear spectroscopy schemes in the extreme ultraviolet (XUV) spectral range. However, in collinear arrangements using a single nonlinear medium, temporally overlapping seed pulses may introduce nonlinear mixing signals that compromise the experiment at short time delays. Here, we investigate these effects in detail by extending the analysis described in a recent publication (Wituschek et al.

View Article and Find Full Text PDF

We compute the proton transfer rates to a range of volatile organic compounds (VOCs) related to cork taint in wine. These rates are useful to support quantification in proton-transfer-reaction mass spectrometry (PTR-MS) and in selected-ion flow-tube mass spectrometry (SIFT-MS). We apply the average dipole orientation theory and the parameterized trajectory method to evaluate the rate coefficients for proton transfer occurring in ion-molecule collision, from both H O and NH to the VOCs.

View Article and Find Full Text PDF

The work function is the parameter of greatest interest in many technological applications involving charge exchange mechanisms at the surface. The possibility to produce samples with a controlled work function is then particularly interesting, albeit challenging. We synthetized nanostructured vanadium oxide films by a room temperature supersonic cluster beam deposition method, obtaining samples with tunable stoichiometry and work function (3.

View Article and Find Full Text PDF

The recent development of ultrafast extreme ultraviolet (XUV) coherent light sources bears great potential for a better understanding of the structure and dynamics of matter. Promising routes are advanced coherent control and nonlinear spectroscopy schemes in the XUV energy range, yielding unprecedented spatial and temporal resolution. However, their implementation has been hampered by the experimental challenge of generating XUV pulse sequences with precisely controlled timing and phase properties.

View Article and Find Full Text PDF

Intense short-wavelength pulses from free-electron lasers and high-harmonic-generation sources enable diffractive imaging of individual nanosized objects with a single x-ray laser shot. The enormous data sets with up to several million diffraction patterns present a severe problem for data analysis because of the high dimensionality of imaging data. Feature recognition and selection is a crucial step to reduce the dimensionality.

View Article and Find Full Text PDF

A significant fraction of superfluid helium nanodroplets produced in a free-jet expansion has been observed to gain high angular momentum resulting in large centrifugal deformation. We measured single-shot diffraction patterns of individual rotating helium nanodroplets up to large scattering angles using intense extreme ultraviolet light pulses from the FERMI free-electron laser. Distinct asymmetric features in the wide-angle diffraction patterns enable the unique and systematic identification of the three-dimensional droplet shapes.

View Article and Find Full Text PDF

Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches.

View Article and Find Full Text PDF

Nanostructured carbon sp(2) (ns-C) thin films with up to 30% of sp-coordinated atoms (carbynes) were produced in a high vacuum by the low kinetic energy deposition of carbon clusters produced in the gas phase and accelerated by a supersonic expansion. Immediately after deposition the ns-C films were immersed in situ in an ionic liquid electrolyte. The interfacial properties of ns-C films in the ionic liquid electrolyte were characterized by electrochemical impedance spectroscopy and cyclic voltammetry (CV).

View Article and Find Full Text PDF

The Low Density Matter (LDM) beamline has been built as part of the FERMI free-electron laser (FEL) facility to serve the atomic, molecular and cluster physics community. After the commissioning phase, it received the first external users at the end of 2012. The design and characterization of the LDM photon transport system is described, detailing the optical components of the beamline.

View Article and Find Full Text PDF

The growth of nanostructured nickel : carbon (Ni : C) nanocomposite thin films by the supersonic cluster beam deposition of nickel and carbon clusters co-deposited from two separate beam sources has been demonstrated. Ni : C films retain the typical highly disordered structure with predominant sp(2) hybridization, low density, high surface roughness and granular nanoscale morphology of cluster assembled nanostructured carbon, but display enhanced electric conductivity. The electric double layer (EDL) capacitance of Ni : C films featuring the same thickness (200 nm) and different nickel volumetric concentrations (0-35%) has been investigated by electrochemical impedance spectroscopy employing an aqueous solution of potassium hydroxide (KOH 1 M) as electrolyte solution.

View Article and Find Full Text PDF

The presence and stability of sp hybridized atoms in free carbon nanoparticles was investigated by NEXAFS spectroscopy. The experiments show that a predominant fraction of carbon atoms is found in linear sp-chains and that conversion into sp(2) structures proceeds already at low temperature and in the gas phase.

View Article and Find Full Text PDF

Ab initio calculations within density-functional theory combined with experimental Raman spectra on cluster-beam deposited pure-carbon films provide a consistent picture of sp-carbon chains stabilized by sp;{3} or sp;{2} terminations, the latter being sensitive to torsional strain. This unexplored effect promises many exciting applications since it allows one to modify the conductive states near the Fermi level and to switch on and off the on-chain pi-electron magnetism.

View Article and Find Full Text PDF

Living-cell microarrays are powerful tools for functional genomics and drug discovery. However, despite several attempts to improve this technology, it is still a challenge to obtain microarrays of cells efficiently overexpressing or downregulating specific genes to address complex phenotypes. Here, we present a cell-based microarray for phenotype screening on primary and cancer cells based on the localized reverse infection by retroviruses.

View Article and Find Full Text PDF

We have characterized the biocompatibility of nanostructured TiO2 films produced by the deposition of a supersonic beam of TiOx clusters. Physical analysis shows that these films possess, at the nanoscale, a granularity and porosity mimicking those of typical extracellular matrix structures and adsorption properties that could allow surface functionalization with different macromolecules such as DNA, proteins, and peptides. To explore the biocompatibility of this novel nanostructured surface, different cancer and primary cells were analyzed in terms of morphological appearance (by bright field microscopy and immunofluorescence) and growth properties, with the aim to evaluate cluster-assembled TiO2 films as substrates for cell-based and tissue-based applications.

View Article and Find Full Text PDF