Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sub-cellular organelle anomalies are frequently observed in diseases such as cancer. Early and precise diagnosis of these alterations can be crucial for patient outcomes. However, current diagnostic tools using conventional organic dyes or metal quantum dots face limitations, including poor biocompatibility, stringent storage conditions, limited solubility in aqueous media, and slow staining speeds. These challenges underscore the need for safer, more effective diagnostic and therapeutic solutions. In these aspects, we have developed highly photostable, biocompatible, water-dispersible carbon dots (TNCDs) with an average size of 5.5 nm using tartaric acid and ethylenediamine a hydrothermal route. The synthesized TNCDs have shown bright blue fluorescence under the irradiation of UV-light at an excitation wavelength of 365 nm. They exhibit a quantum yield (QY) of 25.1% with maximum emission at 390 nm. A nice tri-exponential fitting of the decay curve with characteristic lifetimes of 1.52 ns, 3.05 ns and 6.11 ns for TNCDs was obtained. studies demonstrated that TNCDs have high biocompatibility (20 μg ml) with almost 100% cell viability and excellent nucleus targeting and staining capabilities with low background interference (with 10-12 times enhancement in fluorescence intensity). Additionally, if tagged with photosensitizers or radionuclides, TNCDs can serve as therapeutic agents in photodynamic therapy against cancer cells. Importantly, TNCDs exhibited negligible toxicity in developing zebrafish even at high concentrations (up to 400 mg L) as investigated by cardio and craniofacial disfunction assessment. Live organism imaging revealed that TNCDs produced aggregation-induced strong and specific green fluorescence in the gut of zebrafish larvae even at low concentrations, indicating their potential for nucleus staining and gut-specific optical imaging (at 50 mg L). Thus, our TNCDs represent a robust nanoplatform for cellular and whole-organism fluorescence imaging, offering both diagnostic and therapeutic potential.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr04077eDOI Listing

Publication Analysis

Top Keywords

carbon dots
8
disfunction assessment
8
diagnostic therapeutic
8
tncds
8
fluorescence
5
fluorescence tunable
4
tunable carbon
4
dots nuclear
4
nuclear dynamics
4
dynamics gastrointestinal
4

Similar Publications

Background: In the contemporary era of rapid digital advancement, information security is closely associated with our daily life. From personal information to state secrets, all domains are intricately linked with information. Consequently, the significance of information security has garnered growing attention from an ever-increasing number of individuals.

View Article and Find Full Text PDF

Mn-doped carbon dots-based fluorescent-colorimetric dual-mode probes for selective and sensitive detection of Cr(VI) ions and l-ascorbic acid via smartphone-integrated analytical platform.

Anal Chim Acta

November 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:

Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.

View Article and Find Full Text PDF

A new variety of nitrogen-doped carbon dots (NCDs) was produced using a hydrothermal synthesis method, based on propanedioic acid and barbituric acid as the sources of carbon and nitrogen. The NCDs were analyzed by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Zeta Potential,X-ray Diffraction(XRD),Thermogravimetry-Derivative Thermogravimetry(TG-DTG),Fourier transform infrared spectroscopy (FTIR) and Fluorescence Lifetime. The characterization results indicate that NCDs possess an average diameter of approximately 2.

View Article and Find Full Text PDF

A versatile fluorescent molecularly imprinted nanosensor (MIPs@O-CDs) for profiling ciprofloxacin (CIP) was innovatively developed using a controllable post-imprinting modification strategy. High-affinity molecularly imprinted polymers (MIPs) as recognition elements granted nanosensor favorable anti-interference. Bright orange-emission carbon dots (O-CDs) as signal transducers demonstrated prominent reverse fluorescence response to CIP due to inner filter effect, ameliorating detection sensitivity and accuracy.

View Article and Find Full Text PDF

The development of multifunctional nanoplatforms capable of drug delivery and real-time cellular imaging remains a key challenge in cancer theranostics. Herein, we report the development of a casein-protected maleic acid-derived nitrogen-doped carbon dot-based luminescent nanoplatform (MNCD@Cas NPs) for efficient delivery of the anticancer drug doxorubicin hydrochloride (DOX) to triple-negative breast cancer cells. Synthesized via a facile two-step method, the MNCD@Cas NPs exhibit bright blue fluorescence (λ = 390 nm), high water dispersibility, excellent colloidal stability, and substantial DOX loading capacity (∼84%) driven by electrostatic interactions.

View Article and Find Full Text PDF