Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The success of proton exchange membrane water electrolysis (PEMWE) depends on active and robust electrocatalysts to facilitate oxygen evolution reaction (OER). Heteroatom-doped-RuO has emerged as a promising electrocatalysts because heteroatoms suppress lattice oxygen participation in the OER, thereby preventing the destabilization of surface Ru and catalyst degradation. However, identifying suitable heteroatoms and achieving their atomic-scale coupling with Ru atoms are nontrivial tasks. Herein, to steer the reaction pathway away from the involvement of lattice oxygen, we integrate OER-active Ir atoms into the RuO matrix, which maximizes the synergy between stable Ru and active Ir centers, by leveraging the changeable growth behavior of Ru/Ir atoms on lattice parameter-modulated templates. In PEMWE, the resulting (RuIr)O/C electrocatalysts demonstrate notable current density of 4.96 A cm and mass activity of 19.84 A mg at 2.0 V. In situ spectroscopic analysis and computational calculations highlight the importance of the synergistic coexistence of Ru/Ir-dual-OER-active sites for mitigating Ru dissolution via the optimization of the binding energy with oxygen intermediates and stabilization of Ru sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723980PMC
http://dx.doi.org/10.1038/s41467-025-55910-1DOI Listing

Publication Analysis

Top Keywords

oxygen evolution
8
lattice oxygen
8
oxygen
5
atomic-level ru-ir
4
ru-ir mixing
4
mixing rutile-type
4
rutile-type ruiro
4
ruiro efficient
4
efficient durable
4
durable oxygen
4

Similar Publications

Proton transfer plays an important role in both hydrogen and oxygen evolution reactions during electrocatalytic water splitting to produce green hydrogen. However, directly adapting the conventional proton/deuterium kinetic isotope effect to study proton transfer in heterogeneous electrocatalytic processes is challenging. Here we propose using the shift in the Tafel slope between protic and deuteric electrolytes, or the Tafel slope isotope effect, as an effective probe of proton transfer characteristics.

View Article and Find Full Text PDF

CuCo-Embedded Nitrogen-Doped Carbon as a Bifunctional Catalyst for Efficient Rechargeable Zinc-Ethanol/Air Batteries.

ACS Appl Mater Interfaces

September 2025

College of Chemistry and Chemical Engineering, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.

The oxygen evolution reaction (OER) in conventional zinc-air batteries (ZABs) involves a complex multielectron transfer process, leading to slow reaction kinetics, high charging voltage, and low energy efficiency. To address these limitations, a zinc-ethanol/air battery (ZEAB) system that strategically replaces the OER with the ethanol oxidation reaction (EOR) possessing a lower thermodynamic potential has been proposed. Herein, a bimetallic catalyst CuCo-embedded nitrogen-doped carbon (CuCo-20%-1), derived from a Cu/Co/Cd co-coordinated metal-organic precursor, is synthesized and exhibits an excellent performance for both EOR and ORR.

View Article and Find Full Text PDF

Suppression of passivation on NiMoO4 microrod by ultrathin metal-organic-framework nanosheets in urea-assisted natural seawater splitting.

J Colloid Interface Sci

September 2025

Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam. Electronic address:

Organic nucleophile-assisted natural seawater electrolysis has emerged as a promising strategy for green hydrogen production by significantly reducing energy consumption. Among Ni-based electrocatalysts, NiMoO has drawn attention for its activity in both oxygen evolution reaction (OER) and urea oxidation reaction (UOR). However, its practical application is hindered by severe surface passivation, particularly at industrial current densities (e.

View Article and Find Full Text PDF

Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).

View Article and Find Full Text PDF

Dynamic redistribution of intermediates induced by a local electric field microenvironment boosts efficient overall water electrolysis.

J Colloid Interface Sci

September 2025

State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.

Reaction intermediates (RI) are key factors that directly determine the efficiency of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this study, a local electric field microenvironment was built in a FeNi and MoNi heterostructure (H-FeNiMo/NMF) to induce the redistribution of hydroxyls and protons on the metal sites during the OER and HER. H-FeNiMo/NMF requires only 270 and 155 mV to reach 100 mA cm in alkaline media for OER and HER, respectively.

View Article and Find Full Text PDF