98%
921
2 minutes
20
Climate change is increasing the frequency of large-scale, extreme environmental events and flattening environmental gradients. Whether such changes will cause spatially synchronous, large-scale population declines depends on mechanisms that limit metapopulation synchrony, thereby promoting rescue effects and stability. Using long-term data and empirical dynamic models, we quantified spatial heterogeneity in density dependence, spatial heterogeneity in environmental responses, and environmental gradients to assess their role in inhibiting synchrony across 36 marine fish and invertebrate species. Overall, spatial heterogeneity in population dynamics was as important as environmental drivers in explaining population variation. This heterogeneity leads to weak synchrony in the California Current Ecosystem, where populations exhibit diverse responses to shared, large-scale environmental change. In contrast, in the Northeast U.S. Shelf Ecosystem, gradients in average environmental conditions among locations, filtered through nonlinear environmental response curves, limit synchrony. Simulations predict that environmental gradients and response diversity will continue to inhibit synchrony even if large-scale environmental extremes become common. However, if environmental gradients weaken, synchrony and periods of large-scale population decline may rise sharply among commercially important species on the Northeast Shelf. Our approach thus allows ecologists to 1) quantify how differences among local communities underpin landscape-scale resilience and 2) identify the kinds of future climatic changes most likely to amplify synchrony and erode species stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725893 | PMC |
http://dx.doi.org/10.1073/pnas.2404155121 | DOI Listing |
Bioresour Technol
September 2025
Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China. Electronic address:
Microbial desalination cells (MDCs) have traditionally employed simplified NaCl solutions as feedwater for synchronous desalination and bioenergy recovery. Nevertheless, the specific mechanisms by which MDCs remove complex multi-ions from saline wastewater remain obscure. This study thoroughly investigated ion migration, bioelectrochemical dynamics, and microbial ecological responses across three distinct configurations: monovalent ions - PMDC, divalent cations - CMDC and anions - AMDC.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Institute of Orthopedic Surgery, Xijing Hospital, Air force Medical University;
Bone tissue is an important load-bearing organ of the human body. Moderate exercise enhances bone mass through mechanical loading, while high-intensity exercise may suppress it. Infrared therapy improves circulation, reduces pain/inflammation, and aids tissue repair.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
To characterize the bioaccessibility of inhaled organophosphate esters (OPEs) in the respiratory tract, we employed a highly idealized mouth-throat model to investigate the occurrence, distribution, and deposition of 17 OPEs in airborne particulate matter (PM, PM, and PM; = 80 pairs) and gas phases ( = 48) under gradient temperature and humidity. OPEs concentrations were also measured in exhaled breath condensate (EBC; = 50) and sputum ( = 30) from 30 adults. Total median ∑OPEs concentrations in inhaled air were 4.
View Article and Find Full Text PDFACS Nano
September 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.
Airborne pathogens and pollution control typically necessitate multiple membranes, each specializing in efficient aerosol filtration, moisture regulation, or antimicrobial protection. Integrating all these functions into a single membrane is highly advantageous but remains inherently challenging due to material incompatibility and inevitable performance trade-offs. Here, we present a photoactive Janus nanofibrous membrane for highly efficient air purification, engineered via sequential electrospinning.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, and The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266000 China.
Unlabelled: The distribution of (Euphrasen, 1788) spans a pronounced latitudinal-environmental gradient from the subtropical to the subpolar zones. The species is reported to have multiple stocks along coastal China, exhibiting different spawning behaviors and habitat preferences. Such ecological variations might imply potential genetic divergence and local adaptation.
View Article and Find Full Text PDF