98%
921
2 minutes
20
Inflammation aggravates secondary damage following spinal cord injury (SCI). M1 microglia induce inflammation and exert neurotoxic effects, whereas M2 microglia exert anti-inflammatory and neuroprotective effects. The sine oculis homeobox (SIX) gene family consists of six members, including sine oculis homeobox homolog 1 (SIX1)-SIX6. SIX1 is expressed in microglia and promotes inflammation. This study aimed to evaluate the role and underlying mechanisms of SIX1 in microglia polarization in vitro (LPS-treated mouse microglia; BV2 cells) and in vivo (a mouse model of SCI). SIX1 expression was increased in the microglia of mice with SCI. SIX1 was positively correlated with the M1 microglia marker inducible nitric oxide synthase (iNOS) and negatively correlated with the M2 microglia marker arginase 1 (Arg1) in mice with SCI. Knockdown of SIX1 promoted functional recovery by enhancing M2 microglia polarization in mice with SCI. The transcription, expression, and activity of enhancer of zeste homolog 2 (EZH2) were decreased in LPS-stimulated BV2 cells. Downregulation of EZH2 promoted SIX1 expression in LPS-treated BV2 cells by inhibiting the methylation of the SIX1 promoter. SIX1 enhanced the transcription of vascular endothelial growth factor-C (VEGF-C) in LPS-stimulated BV2 cells with downregulated EZH2. VEGF-C promoted M1 polarization and inhibited M2 polarization in BV2 cells by binding to vascular endothelial growth factor receptor 3 (VEGFR3). Overall, the results suggest that SIX1 promotes M1 polarization of microglia following SCI by upregulating the VEGF-C/VEGFR3 axis, whereas the blockade of SIX1 can improve the recovery of locomotor function following SCI, demonstrating a novel strategy for the treatment of SCI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711668 | PMC |
http://dx.doi.org/10.1038/s41598-024-82121-3 | DOI Listing |
Front Pharmacol
August 2025
Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, Republic of Korea.
Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Spine Surgery, Zhongda Hospital Southeast University, 210009 Nanjing, Jiangsu, China.
Background: After spinal cord injury (SCI), pro-inflammatory microglia accumulate and impede axonal regeneration. We explored whether secreted protein acidic and rich in cysteine (Sparc) restrains microglial inflammation and fosters neurite outgrowth.
Methods: Mouse microglial BV2 cells were polarized to a pro-inflammatory phenotype with lipopolysaccharides (LPSs).
CNS Neurosci Ther
September 2025
Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Objective: Traumatic brain injury (TBI), a prevalent neurological disorder worldwide, is marked by varying degrees of neurological dysfunction. A key contributor to secondary damage and impediments in the repair process is the unregulated activation of microglia, which triggers neuroinflammation. Emerging evidence highlights the therapeutic potential of transcranial pulsed current stimulation (tPCS) in mitigating neurological deficits.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
September 2025
Neuroscience Research Center, Suleyman Demirel University, Isparta, Türkiye.
Background: Microglia are brain resident cells that control neural network maintenance, damage healing, and brain development. Microglia undergo apoptosis, cytokine production, and reactive free radicals of oxygen (ROS) in response to lipopolysaccharide (LPS) stimulation. TRPM2 is activated by LPS-induced oxidative stress, but it is inhibited by carvacrol (CARV) and N-(p-amylcinnamoyl)anthranilic acid (ACA).
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. Electronic address:
Ethnopharmacological Relevance: Jiao-tai-wan (JTW) is a classical traditional Chinese medicine formula that has long been used to treat insomnia. Recent pharmacological studies have highlighted its potential antidepressant effects. However, its role in regulating neuroinflammation associated with depression and the underlying mechanisms remains unclear.
View Article and Find Full Text PDF