Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Prompt learning is a powerful technique that enables the transfer of Vision-Language Models (VLMs) like CLIP to downstream tasks. However, when the prompt-based methods are fine-tuned solely on base classes, they often struggle to generalize to novel classes lacking visual samples during training, especially in scenarios with limited training data. To address this challenge, we propose an innovative approach called Synth-CLIP that leverages synthetic data to enhance CLIP's generalization capability for base classes and the general capability for novel classes. Synth-CLIP fine-tunes the pre-trained CLIP model by seamlessly integrating tailored prompts that are both domain-specific and domain-shared, specifically designed for visual samples, reorganizing visual features from real and synthetic domains into the semantic space. This approach efficiently expands the data pool and enriches category diversity. Moreover, based on semantic structure consistency, we introduce a cross-domain feature alignment loss to match the real and synthetic samples in the feature embedding space. By aligning the visual and semantic distributions, the synthetic data from base and novel classes provide crucial discriminative information, enabling the model to rebalance the decision boundaries even in the absence of real novel visual samples. Experimental results on three model generalization tasks demonstrate that our method performs very competitively across various benchmarks. Notably, Synth-CLIP outperforms the recent competitor PromptSRC by an average improvement of 3.0% on novel classes across 11 datasets in open-vocabulary scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.107083DOI Listing

Publication Analysis

Top Keywords

novel classes
16
synthetic data
12
visual samples
12
base classes
8
real synthetic
8
classes
6
data
5
novel
5
visual
5
synth-clip
4

Similar Publications

Nasal microbiome inhabitants with anti- activity.

Microbiol Spectr

September 2025

Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.

Unlabelled: (SA) colonizes most mammals but also represents a danger in clinical settings because it evolves resistance against antibiotics, and SA infections represent a leading cause of death worldwide. SA nasal carriage provides the bacterial reservoir for opportunistic infection because clinical strains often match the patient's own nasally carried strain. The global SA carriage rate is typically reported as 25%-30% after sampling subjects once or twice and defining carrier status using culture-based methods.

View Article and Find Full Text PDF

Radiation exposure initiates a cascade of reactions, including the release of reactive oxygen species, DNA double-strand breaks, and cellular apoptosis, leading to cell death, tissue damage, and potentially the development of cancer. Consequently, there is an urgent need to develop highly effective and low-toxicity radioprotective agents. Traditional chemically synthesized protective agents face significant limitations in clinical applicability due to their pronounced off-target toxicity, narrow therapeutic window, and high production costs.

View Article and Find Full Text PDF

Introduction: Tenvermectin (TVM) is a novel avermectin-class drug that has attracted attention for its superior antiparasitic potency, low toxicity, and broad-spectrum activity. However, uncertainty about its interaction with cytochrome P450 enzymes (CYPs) has raised concerns about potential therapeutic failure, increased risk of toxicity, dangerous drug combinations, and prolonged discontinuation periods.

Method: To address these critical safety concerns, we conducted a systematic comparative study using a highly selective and quantitatively accurate substrate conversion assay to assess and compare the effects of TVM and ivermectin (IVM) on the activities of key CYPs (CYP1A1/2, 2B1, 2C6, 2D2, and 3A1/2).

View Article and Find Full Text PDF

Herein, a novel class of azo photoswitches based on a phthalimide with an azo bond to the imide ring is presented, exhibiting reversible isomerization under a broad range of visible light irradiation from 405 to 530 nm. Structural variations with heteroaryl or aryl segments attached to the 3-phthalylazo unit exhibit distinct spectral features, such as red-shifted absorption, well-separated absorption bands, and tunable stability of the metastable isomer, ranging from seconds to days. They differ drastically in the half-life of -isomer stability, ranging from several seconds (-methylpyrrole) to days (-methylimidazole).

View Article and Find Full Text PDF

Research status of small molecule inhibitors, probes, and degraders of NSDs: a comprehensive review.

Future Med Chem

September 2025

Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, P.R. China.

The nuclear receptor binding SET domain (NSD) family of histone methyltransferases, which comprised NSD1, NSD2, and NSD3. They play a pivotal role in catalyzing mono- and dimethylation of histone H3 at lysine 36 (H3K36me1/2), a modification critical for maintaining chromatin structure and transcriptional fidelity. Dysregulation of NSD enzymes, often through overexpression, mutation, or chromosomal translocation, has been implicated in a broad spectrum of malignancies and various diseases.

View Article and Find Full Text PDF