Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-capacity power battery can be attained through the elevation of the cut-off voltage for LiNiCoMnO high-nickel material. Nevertheless, unstable lattice oxygen would be released during the lithium deep extraction. To solve the above issues, the electronic structure is reconstructed by substituting Li ions with Y ions. The dopant within the Li layer could transfer electrons to the adjacent lattice oxygen. Subsequently, the accumulated electrons in the oxygen site are transferred to nickel of highly valence state under the action of the reduction coupling mechanism. The modified strategy suppresses the generation of oxygen defects by regulating the local electronic structure, but more importantly, it reduces the concentration of highly reactive Ni species during the charging state, thus avoiding the evolution of an unexpected phase transition. Strengthening the coupling strength between the lithium layers and transition metal layers finally realizes the fast-charging performance improvement and the cycling stability enhancement under high voltage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697207PMC
http://dx.doi.org/10.1038/s41467-024-52768-7DOI Listing

Publication Analysis

Top Keywords

electronic structure
12
lattice oxygen
8
structure formed
4
formed yo-doping
4
yo-doping lithium
4
lithium position
4
position assists
4
assists improvement
4
improvement charging-voltage
4
charging-voltage high-nickel
4

Similar Publications

Tuning the Electronic Structure in the MoS/SrTiO Heterojunction via Phase Evolution of the SrTiO Substrate.

ACS Nano

September 2025

Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.

The coupling between transition metal dichalcogenides (TMDCs) and SrTiO has recently emerged as a fertile platform for discovering interfacial phenomena, where particle interactions, lattice coupling, and dielectric screening give rise to interesting physical effects. These hybrid systems hold significant promise for two-dimensional (2D) electronics, ferroelectric state control, and metastable phase engineering. However, effective modulation of the interfacial electronic structure remains a critical challenge.

View Article and Find Full Text PDF

Molecular Plasmonic Cavities.

Nano Lett

September 2025

Department of Physics, Columbia University, New York, New York 10027, United States.

Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.

View Article and Find Full Text PDF

A flexible linear circular bipolarization conversion metasurface based on graphene.

Phys Chem Chem Phys

September 2025

School of Electrical and Automation Engineering, Suzhou University of Technology, Suzhou, 215506, China.

A flexible bipolarization conversion metasurface based on graphene is proposed in this paper, which can achieve single-band linear-to-linear (LTL) and dual-band linear-to-circular (LTC) polarization conversion. The polarization conversion ratio (PCR) and axial ratio (AR) are dynamically regulated by varying the sheet resistance () of graphene. When = 1400 Ω Sq, the designed metasurface achieves a single-band LTL polarization conversion of 7.

View Article and Find Full Text PDF

Design of Z-scheme WSSe-XS (X = Zr and Hf) heterostructures as photocatalysts for efficient solar water splitting.

Phys Chem Chem Phys

September 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.

Transition metal dichalcogenides (TMDs) have been extensively studied as efficient photocatalysts for water splitting. However, the utilization efficiency of photogenerated carriers remains a major limitation for their practical applications. An effective approach to address this issue is the construction of Z-scheme heterostructures.

View Article and Find Full Text PDF

We investigated primary and secondary geometric isotope effects (H, D, T) on charge-inverted hydrogen bonds (CIHB) and dihydrogen bonds (DHB) using nuclear-electronic orbital density functional theory (NEO-DFT). The dianionic but electrophilic boron cluster [BH] served as a bonding partner, exhibiting a negatively polarized hydrogen atom in the BH bond. CIHB systems included interactions with Lewis acids (AlH, BH, GaH) and carbenes (CF, CCl, CBr), while DHBs were analyzed with NH, HF, HCl, and HBr.

View Article and Find Full Text PDF