Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cholera rapid diagnostic tests (RDTs) are vulnerable to virulent bacteriophage predation. We hypothesized that an enhanced cholera RDT that detects the common virulent bacteriophage ICP1 might serve as a proxy for pathogen detection. We previously developed a monoclonal antibody (mAb) to the ICP1 major capsid protein. Our objective was to design and assemble a first-of-its-kind RDT that detects both a bacterial pathogen () and associated virulent bacteriophage (ICP1). Candidate mAbs were expanded to increase design options and evaluated by immunological assays (ELISA; western blot). A subset of mAbs were selected for gold conjugation and printing on the RDT. The detection limit of the prototype RDTs was determined in diarrheal stools with the addition of ICP1. Three mAb candidates were developed and evaluated for the capsid decoration protein (ORF123) and tail fiber protein (ORF93), and the prior mAb for the major capsid protein (ORF122). A single mAb sandwich RDT prototype for ORF122 was able to detect ICP1; RDTs with mAbs to ORF123 and ORF93 failed to detect ICP1 in single- or dual-sandwich configurations. Biologically relevant concentrations for ICP1 were detected only after boiling the stool with ICP1; analysis by electron microscopy (EM) suggested increased epitope availability after boiling. In this study, we demonstrate a proof of concept for a functional RDT that can detect both the primary pathogen and a common virulent bacteriophage as a proxy for pathogen detection. Further optimization is required before scaled production and implementation.IMPORTANCEThis paper represents an important step forward to address the vulnerability of cholera RDTs to the effects of phage predation on the target . The assembly and evaluation of an RDT that detects both the primary pathogen and a phage as a proxy for the primary pathogen is an innovative solution. When optimized and evaluated in clinical studies, this tool may become critical in the cholera response tool kit as well as represent a diagnostic proof-of-concept for other infectious agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837499PMC
http://dx.doi.org/10.1128/jcm.01443-24DOI Listing

Publication Analysis

Top Keywords

virulent bacteriophage
16
proxy pathogen
12
pathogen detection
12
rdt detects
12
primary pathogen
12
cholera rdt
8
rdt prototype
8
bacteriophage proxy
8
common virulent
8
icp1
8

Similar Publications

A metagenomic approach for microbial risk assessment and source attribution in high-risk ports of entry environments.

Biosaf Health

August 2025

NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.

The epidemiological characteristics of emerging infectious disease outbreaks in recent years have underscored the critical importance of controlling imported infectious diseases. In this study, we implemented dynamic tracking of microbial invasions by monitoring environmental microbes at the customs and ports. From July to September 2024, a total of 126 environmental samples were collected from three ports of entry in Shenzhen, China.

View Article and Find Full Text PDF

Background: Carbapenem-resistant Acinetobacter baumannii (CRAB) has recently become a serious cause for global concern because of non-susceptibility to multiple antimicrobial classes, its prevalence in nosocomial infections, and the lack of effective treatments against such a pathogen.

Methods: This study isolated two lytic phages from hospital sewage, purified, propagated, characterized morphologically by transmission electron microscopy, and genomically by Oxford Nanopore Sequencing. The phage lysates were then formulated individually as carboxymethylcellulose (CMC) 5 % w/v hydrogels.

View Article and Find Full Text PDF

A rapid and ultrasensitive CRISPR/Cas12a-based assay for the accurate identification of T-even type phages.

Biotechnol Lett

September 2025

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Phage contamination poses a significant threat to industrial fermentation, leading to substantial economic losses. Virulent T-even type phages (T2/T4/T6) represent particularly concerning biological hazards in fermentation systems. This paper developed a novel CRISPR/Cas12a-based system integrated with recombinase polymerase amplification (RPA), enabling ultrasensitive identification of T-even type phages.

View Article and Find Full Text PDF

Isolation and characterization of bacteriophages from clinical enterohemorrhagic strains.

Microbiol Spectr

September 2025

VUB-VIB Center for Structural Biology, Vlaams Instituut voor Biotechnologie and Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.

Temperate bacteriophages play a pivotal role in the biology of their bacterial host. Of particular interest are bacteriophages infecting enterohemorrhagic (EHEC) due to their significant contribution to the pathogenicity of its host, most notably by encoding the key virulence factor of this pathogen, the Shiga toxin. To better understand the role of EHEC phages on the functionality of its host, we isolated eight temperate phages from clinical EHEC isolates and characterized their genomic composition, morphology, and receptor targeting.

View Article and Find Full Text PDF

A novel lytic Seuratvirus phage CABI-SEA 2301 with broad host range against multidrug-resistant avian pathogenic Escherichia coli.

Vet J

September 2025

Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand. Electronic address:

Multidrug-resistant avian pathogenic Escherichia coli (MDR-APEC) causes high mortality in newborn chickens, leading to significant economic losses for poultry industry worldwide. The present study proposes an effective alternative strategy to control APEC infections by using bacteriophage specific to MDR-APEC. Lytic phage CABI-SEA 2301 isolated from a chicken faecal sample collected at a commercial poultry farm using the double layer agar overlay technique was classified as a novel species in the genus Seuratvirus, subfamily Queuovirinae.

View Article and Find Full Text PDF