98%
921
2 minutes
20
Green soybean ( (L.) Merrill) is a highly nutritious food that is a good source of protein and fiber. However, it is sensitive to low temperatures during the growing season, and enhancing cold tolerance has become a research hotspot for breeding improvement. The underlying molecular mechanisms of cold tolerance in green soybean are not well understood. Here, a comprehensive analysis of transcriptome and metabolome was performed on a cold-tolerant cultivar treated at 10 °C for 24 h. Compared to control groups, we identified 17,011 differentially expressed genes (DEGs) and 129 differentially expressed metabolites (DEMs). The DEGs and DEMs were further subjected to KEGG functional analysis. Finally, 11 metabolites (such as sucrose, lactose, melibiose, and dehydroascorbate) and 17 genes (such as , , , and ) were selected as candidates associated with cold tolerance. Notably, the identified metabolites and genes were enriched in two common pathways: 'galactose metabolism' and 'ascorbate and aldarate metabolism'. The findings suggest that green soybean modulates the galactose metabolism and ascorbate and aldarate metabolism pathways to cope with cold stress. This study contributes to a deeper understanding of the complex molecular mechanisms enabling green soybeans to better avoid low-temperature damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678371 | PMC |
http://dx.doi.org/10.3390/metabo14120687 | DOI Listing |
Cell Rep
September 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Seedlings emerged from the covering soil immediately undergo de-etiolation, ensuring plants switch from heterotrophic to photoautotrophic growth. This transition is essential for seedling development and survival. However, the underlying mechanism remains largely obscure.
View Article and Find Full Text PDFFood Chem
September 2025
Chemical Engineering Department, Universidade Federal de Santa Maria, Av. Roraima, 1000-7, 97105-900 Santa Maria, Rio Grande do Sul, Brazil. Electronic address:
Green solvents offer promising alternatives to n-hexane for sustainable vegetable oil extraction. This study evaluated ethanol, isopropanol, acetone, and ethyl acetate for extracting oils from avocado pulp (AP), rice bran (RB), and soybean flakes (SF), focusing on oil quality and defatted meal properties. lnγ obtained by COSMO-SAC showed tendencies for effective interactions with solutes.
View Article and Find Full Text PDFJ Integr Plant Biol
September 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Center for Soybean Improvement, National Innovation Platform for Soybean Breeding and Industry-Education Integration, Key Laboratory for Biology and Genetic Improvement o
Soybean is an important source of oil, protein, and feed. However, its yield is far below that of major cereal crops. The green revolution increased the yield of cereal crops partially through high-density planting of lodging-resistant semi-dwarf varieties, but required more nitrogen fertilizers, posing an environmental threat.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Chinese Academy of Agriculture Mechanization Sciences Group Co., Ltd., Beijing, China.
Intercropping maize and soybean with distinct plant heights is a typical practice in diversified cropping systems, where shadows cast by taller maize plants onto soybean rows pose significant challenges for image based recognition. This study conducted experiments throughout the entire soybean-maize intercropping period to address illumination variation. Based on the height difference between crops, solar elevation angle, and light intensity at the top of the soybean canopy, an illumination compensation regression model was developed.
View Article and Find Full Text PDFTalanta
August 2025
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Rep
Tert-butylhydroquinone (TBHQ) is a common antioxidant in food oils, and reliable detection methods are needed to ensure food safety. Here, a photoelectrochemical (PEC) sensor based on BiO/MgInS/GCE was developed for the detection of TBHQ. The sensor performance was significantly enhanced through electrostatic assembly of sheet-like BiO onto flower-like MgInS, forming a type-II heterojunction with carefully controlled component ratios, pH, and applied potential.
View Article and Find Full Text PDF