A photothermal MXene-derived heterojunction for boosted CO reduction and tunable CH selectivity.

J Colloid Interface Sci

School of Environment, South China Normal University, Guangzhou 510006, China; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, Chin

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report here a BiWO/TiCT@Ag (BT@Ag) photothermal photocatalyst for efficient CO reduction with tunable CH selectivity. Incorporation of TiCT MXene creates well-defined heterointerfaces between BiWO and TiCT and converts thermal energy upon light illumination via photothermal effect, which contributes to a mitigation of the recombination of photo-induced charge carries for a high electron mobility. Density functional theory calculations substantiate that TiCT functions as the adsorption site and active center where the transferred electrons are effectively involved in CO reduction for enhanced CH selectivity. Moreover, the in situ deposited Ag nanoparticles demonstrate an exceptional surface plasmon resonance effect, giving rise to additional hot electrons that further benefits the CH generation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.12.108DOI Listing

Publication Analysis

Top Keywords

reduction tunable
8
tunable selectivity
8
photothermal mxene-derived
4
mxene-derived heterojunction
4
heterojunction boosted
4
boosted reduction
4
selectivity report
4
report biwo/tict@ag
4
biwo/tict@ag bt@ag
4
bt@ag photothermal
4

Similar Publications

Flexibility-Induced Robustness in Molecular Catalysts for Electrocatalytic CO Reduction.

J Am Chem Soc

September 2025

Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

CO electroreduction to produce fuels and chemicals is of great significance. Molecular catalysts offer valuable advantages in light of their well-defined active sites and tunable structural and electronic properties. However, their stability is often compromised by rigid conjugated structures.

View Article and Find Full Text PDF

Electron-Rich Macrocycle-Based Metal-Organic Frameworks for Efficient Photocatalytic CO Reduction.

J Am Chem Soc

September 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.

Metal-organic frameworks (MOFs) are distinguished by their structural diversity, tunable electronic properties, and exceptional performance in various applications. Notably, the electron-donating ability of ligands significantly enhances the ligand-to-metal charge transfer (LMCT) processes within these frameworks, thereby promoting efficient charge migration. Herein, we developed two electron-rich macrocyclic ligands derived from phenothiazine- and phenoxazine-functionalized calix[3]arenes, alongside their corresponding cobalt-coordinated MOFs.

View Article and Find Full Text PDF

Multifunctional Photoactive Janus Nanofibrous Membranes for Unidirectional Water Transport and Remediation of Airborne Pathogens and Pollutants.

ACS Nano

September 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.

Airborne pathogens and pollution control typically necessitate multiple membranes, each specializing in efficient aerosol filtration, moisture regulation, or antimicrobial protection. Integrating all these functions into a single membrane is highly advantageous but remains inherently challenging due to material incompatibility and inevitable performance trade-offs. Here, we present a photoactive Janus nanofibrous membrane for highly efficient air purification, engineered via sequential electrospinning.

View Article and Find Full Text PDF

Excessive fossil fuel combustion has accelerated renewable energy development, with hydrogen energy emerging as a promising alternative due to its high energy density and environmental compatibility. Photocatalytic hydrogen production through solar energy conversion represents a viable approach for sustainable development. Metal-organic frameworks (MOFs) have garnered significant research interest owing to their structural tunability, well-defined catalytic sites, and post-synthetic modification capabilities.

View Article and Find Full Text PDF

Polyesters, with their tunable chemical structures and environmental sustainability, have drawn growing attention as solid polymer electrolytes for next-generation solid-state lithium metal batteries (SSLMBs). Through a comprehensive experimental and theoretical study involving the systematic variation of carbon chain lengths in the flexible (diol) and coordinating (diacid) segments, along with selective fluorination at distinct positions along the polymer backbone, 18 types of polyester are fabricated and demonstrate that fluorination at the coordinating segment significantly enhances ionic conductivity by suppressing crystallinity. In contrast, fluorination at the flexible segment reduces ionic migration barriers by providing more homogeneous coordinating sites, thereby improving the lithium-ion transference number, despite increasing chain rigidity and a reduction in overall ionic conductivity.

View Article and Find Full Text PDF