Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Real-time monitoring of infinitesimal deformations on complex morphologies is essential for precision biomechanical engineering. While flexible strain sensors facilitate real-time monitoring with shape-adaptive properties, their sensitivity is generally lower than spectroscopic imaging methods. Crack-based strain sensors achieve enhanced sensitivity with gauge factors (GFs) exceeding 30,000; however, such GFs are only attainable at large strains exceeding several percent and decline below 10 for strains under 10, rendering them inadequate for minute deformations. Here, we introduce hypersensitive and flexible "meta-crack" sensors detecting infinitesimal strains through previously undiscovered crack-opening mechanisms. These sensors achieve remarkable GFs surpassing 1000 at strains of 10 on substrates with a Poisson's ratio of -0.9. The crack orientation-independent gap-widening behavior elucidates the origin of hypersensitivity, corroborated by simplified models and finite element analysis. Additionally, parallel mechanical circuits of meta-cracks effectively address the trade-off between resolution and maximum sensing threshold. In vivo real-time monitoring of cerebrovascular dynamics with a strain resolution of 10 underscores the hypersensitivity and conformal adaptability of sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661431PMC
http://dx.doi.org/10.1126/sciadv.ads9258DOI Listing

Publication Analysis

Top Keywords

real-time monitoring
12
strain sensors
8
sensors achieve
8
sensors
5
hypersensitive meta-crack
4
strain
4
meta-crack strain
4
strain sensor
4
real-time
4
sensor real-time
4

Similar Publications

All-In-One Iontronic Sensing Aligner for High-Precision 3D Orthodontic Force Monitoring.

Adv Sci (Weinh)

September 2025

Department of Orthodontics, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key

Clear aligners offer aesthetic and comfort advantages in orthodontics, yet their ability to deliver effective forces relies heavily on empirical judgment or large-scale optical scanning, lacking real-time quantitative evaluation. Integrating pressure sensors into aligners is a promising solution, but challenges in miniaturization, multi-dimensional sensing, measurement accuracy, and biocompatibility hinder clinical application. Here, an all-in-one Orthodontic Force Acquisition System (OFAS) is presented that enables real-time, 3D force monitoring using a cross-shaped iontronic sensing array and an origami-inspired, wireless battery-free readout circuit miniaturized for single-tooth placement.

View Article and Find Full Text PDF

A water-soluble NIR-II fluorescent probe for non-invasive real-time detection of blood ATP optoacoustic and fluorescence imaging.

J Mater Chem B

September 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.

Adenosine triphosphate (ATP) is a critical biomolecule in cellular energy metabolism, with abnormal levels in the bloodstream linked to pathological conditions such as ischemia, cancer, and inflammatory disorders. Accurate and real-time detection of ATP is essential for early diagnosis and disease monitoring. However, conventional biochemical assays and other techniques suffer from limitations, including invasive sample collection, time-consuming procedures, and the inability to provide dynamic, monitoring.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) management was largely centered around renin-angiotensin-aldosterone system inhibitors (RAASi) optimization, until recent emergence of novel therapeutics. However, slow adoption of guideline-directed therapy leaves patients vulnerable to disease progression. In 2022, a data-driven informatics approach was introduced to track real-time adherence to best practices.

View Article and Find Full Text PDF

Singlet oxygen (O) plays a crucial role in cancer chemotherapy and ROS biology, driving the need for highly specific probes to monitor its dynamics in real time. Herein, we developed the ratiometric fluorescent probe NAP-t-PY, utilizing a 2-pyridone recognition unit. The probe's 1-methyl-3-benzyl-2-pyridone moiety reacts specifically with O [4 + 2] cycloaddition, forming the endoperoxide NAP-t-PY-EP.

View Article and Find Full Text PDF

Selective and rapid detection of ammonia (NH) gas over a wide concentration range is essential for applications such as early diagnosis of renal diseases and environmental safety. NH in exhaled breath serves as a biomarker of kidney function, and its precise detection is vital for early renal disease diagnosis. This work reports a SnS/PANI heterojunction nanocomposite (SPA) sensor synthesized a hydrothermal route followed by oxidative polymerization.

View Article and Find Full Text PDF