Enhancing rejection of short-chain per- and polyfluoroalkyl substances by tailoring the surface charge of nanofiltration membranes.

Water Res

Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China. Electronic address:

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanofiltration (NF) effectively removes per- and polyfluoroalkyl substances (PFAS) from water but struggles with short-chain PFAS (i.e., those containing less than 6 perfluorinated carbons) due to size exclusion inefficiency. In this study, we developed layer-by-layer assembled NF membranes with PDADMAC/PSS terminal bilayers varying in chain lengths, hydrophilicity, and charge, and systematically assessed their removal of 16 representative PFAS species. The mechanisms between long-chain and short-chain PFAS were investigated and optimal strategies for enhancing PFAS selectivity were developed. Results demonstrated that the (PDADMAC/PSS) membrane achieved the highest removal (86.1%-98.1%) for short-chain PFAS, including PFBA-PFHpA (C4-C6), PFBS (C4), PFMOPrA (C3), PFMOBA (C4), and GenX (C5), while effectively removing (>99.9%) long-chain counterparts (≥C7). As feed water pH increased from 3.5 to 9.0, average PFAS rejection rose from 16.6% to 32.0%, revealing more negative charged membrane surface endow stronger electrostatic repulsion, particularly for short-chain anionic PFAS. In addition, we also tested the PFAS removal efficacy of (PDADMAC/PSS) membrane using real sewage plant effluent. Compared to the pristine membrane, the (PDADMAC/PSS) membrane exhibited improved removal for most PFAS, with removal efficiencies ranging from 82.5% for PFOA to 96.7% for PFOS. The most significant improvements were observed in C4 compounds like PFBA and PFBS (increased by 6.0-11.5%). Our study suggests that PFAS removal efficiency by NF highly depends on size exclusion, with short-chain anionic PFAS more likely affected by electrostatic repulsion. Membrane surface manipulation can enhance selectivity, aiding in predicting NF treatment effectiveness for specific PFAS compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122931DOI Listing

Publication Analysis

Top Keywords

pfas
13
short-chain pfas
12
pdadmac/pss membrane
12
pfas removal
12
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
size exclusion
8
membrane surface
8
electrostatic repulsion
8
short-chain anionic
8

Similar Publications

PFAS in plant-biosolids-soil systems: Distribution, fractionation, and effects on soil microbial communities.

J Hazard Mater

September 2025

Department of Environmental & Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, United States. Electronic address:

This study examined the behavior of six U.S. Environmental Protection Agency (EPA) regulated per- and polyfluoroalkyl substances (PFAS) compounds in vegetated soils amended with Class A and Class B biosolids.

View Article and Find Full Text PDF

Introduction: Epidemiological studies focusing on the association of exposure to perfluoroalkyl substances (PFAS) with cardiovascular disease (CVD) morbidity and mortality are limited, with inconsistent findings.

Objectives: This register-based study aimed to investigate the associations between exposure to PFAS and the risk of CVD morbidity and mortality in a Swedish population exposed to PFAS, dominated by perfluorohexane sulfonic acid (PFHxS) and perfluorooctane sulfonic acid (PFOS), through drinking water for decades.

Methods: The study included 46 553 individuals aged ≥30 who lived in Ronneby (1985-2013).

View Article and Find Full Text PDF

Trophic-level accumulation and transfer of legacy and emerging contaminants in marine biota: meta-analysis of mercury, PCBs, microplastics, PFAS, PAHs.

Mar Pollut Bull

September 2025

Florida International University, Civil and Environmental Engineering, 10555 West Flagler Street, Engineering Center, Miami, Florida 33174, USA. Electronic address:

Marine ecosystems are increasingly threatened by anthropogenic pollutants, including plastics, persistent organic pollutants, heavy metals, oil, and emerging contaminants. This meta-analysis examined the accumulation patterns of five major contaminants-mercury (Hg), polychlorinated biphenyls (PCBs), microplastics, per- and polyfluoroalkyl substances (PFAS), and polycyclic aromatic hydrocarbons (PAHs)-in relation to trophic level and lifespan across marine species. Data synthesis revealed distinct differences in bioaccumulation and biomagnification between legacy and emerging contaminants.

View Article and Find Full Text PDF

Occurrence, distribution characteristics, and potential ecological risks of perfluorinated compounds in major estuaries and adjacent offshore areas in Hainan Island.

Mar Environ Res

September 2025

Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou, 570228, China; Hainan International Joint Research Center for Reef Ecology, School of Ecology, Hainan University, Haikou, 570228, China. Electronic address:

Per- and polyfluoroalkyl substances (PFASs) have gained attention due to their chemical stability, bioaccumulation potential, and toxicity. The ocean serves as the ultimate sink for these compounds in the global environment. With the rapid development of the Hainan Free Trade Port, environmental pollution on Hainan Island has consequently become more pronounced.

View Article and Find Full Text PDF

Assessing the impact of perfluoroalkyl substances on liver health: a comprehensive study using multi-donor human liver spheroids.

Environ Int

September 2025

Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States. Electronic address:

Background: Although per- and polyfluoroalkyl substances (PFAS) have been linked to chronic liver diseases, the specific cellular and molecular mechanisms by which different PFAS contribute to human liver dysfunction remain unclear. This study aims to elucidate those mechanisms.

Methods: We exposed a multi-donor human liver spheroid model composed of multiple cell types to 20 µM of PFHxS, PFOA, PFOS, or PFNA for seven days, followed by single-cell RNA sequencing and lipid staining.

View Article and Find Full Text PDF