Influence of in situ biochar capping on microbial dynamics and ammonia nitrogen release in sediment.

J Environ Manage

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To study the influence of in situ biochar (BC) capping technique on the release of ammonia nitrogen (NH-N) from sediments, a field mesocosm experiment was conducted in Baiyangdian Lake (BYDL), a critical water body often referred to as the "kidney of North China" where sediment pollution poses a significant threat to water quality. This study also assessed the impact of BC on sediment microorganisms. The results showed that the NH-N concentration in the overlying water of the BC-treated mesocosms was the lowest among four treatments, decreasing to 0.051 mg L by the 60th day. More importantly, the BC treatment showed the least increase in NH-N concentrations in sediments compared to other treatments. For sediments capped with a 4 cm layer of BC, the potential release flux of NH-N was reduced from 1.84 mg m d to -0.76 mg m d. This reduction is likely due to the negatively charged surfaces of biochar, which enhance NH-N adsorption through electrostatic interactions. Additionally, BC modified the physical and chemical properties of the surface sediment, improving pH and increasing both organic content and the carbon/nitrogen (C/N) ratio. These changes influenced the microbial community structure within the sediments, enhancing NH-N removal. After 60 days, a significant alteration in the microbial community was observed in the BC-treated surface sediments. The addition of BC significantly increased the abundance of Proteobacteria and Firmicutes of the phyla in the sediments. Furthermore, BC enhanced the expression of functional genes including amoA, amoB, nirK, nirS, hzsB, nrfA and ureC, which are likely the primary microbial mechanisms promoting NH-N conversion in sediments for final removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.123524DOI Listing

Publication Analysis

Top Keywords

influence situ
8
situ biochar
8
biochar capping
8
ammonia nitrogen
8
microbial community
8
nh-n
7
sediments
7
microbial
4
capping microbial
4
microbial dynamics
4

Similar Publications

China's aluminum-products industry, a large-scale consumer of industrial paints, is a potentially significant source of full-volatility organic compounds (F-VOCs). However, the emission characteristics of F-VOCs, including VOCs, intermediate-, semi-, and low-volatility organic compounds (I/S/LVOCs), and their role in ozone formation potentials (OFP), and secondary organic aerosol formation potentials (SOAP) remain unclear. In this study, we collected in-field samples from three industrial paints (solvent-based, water-based and powder paints) at spraying and drying processes, and treatment devices to analyze the emission characteristics of F-VOCs, OFP, SOAP.

View Article and Find Full Text PDF

Removal of antibiotics from anaerobically digested biosolids via synergistic release using ethylenediaminetetraacetic acid disodium salt dihydrate and sodium persulfate oxidation.

J Environ Manage

September 2025

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China. Electronic address:

Large-scale anaerobic treatment involves a high risk of antibiotic pollution in anaerobically digested (AD) biosolids, which hinders the efficient utilization of farmland AD biosolids. Herein, a process for the in situ removal of antibiotics from AD biosolids using ethylenediaminetetraacetic acid disodium salt dihydrate as the release agent synergized with sodium persulfate oxidation is reported. The developed process was used to remove antibiotics from actual AD biosolids.

View Article and Find Full Text PDF

Heterojunctions have garnered significant attention in the field of photocatalysis due to their exceptional ability to facilitate the separation of photogenerated charge carriers and their high efficiency in hydrogen reaction. However, their overall photocatalytic performance is often constrained by electron transport rates and suboptimal hydrogen adsorption/desorption kinetics. To address these challenges, this study develops a g-CN/MoS@MoC dual-effect synergistic solid-state Z-type heterojunction, synthesized through the in-situ sulfurization of MoC combined with ultrasonic self-assembly technique.

View Article and Find Full Text PDF

In situ rapid gelation and osmotic dehydration-assisted preparation of graphene aerogel and its application in piezoresistive sensors.

J Colloid Interface Sci

September 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.. Electronic address:

This study presents a straightforward and rapid method for preparing graphene aerogel by integrating a sodium alginate (SA)-metal ion crosslinking system, a bubble template, and an osmotic dehydration process. Graphene oxide (GO) nanosheets were dispersed into the solution crosslinked by SA and metal ions, leading to rapid gelation of GO under ambient conditions. To minimize structural damage to the porous network caused by water molecules during the drying process, an osmotic dehydration technique was employed as an auxiliary drying method.

View Article and Find Full Text PDF

Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).

View Article and Find Full Text PDF