98%
921
2 minutes
20
In this study, an electroluminescent (ECL) aptasensor that could efficiently and sensitively detect acetamiprid (ACE) in vegetables was constructed based on an exonuclease-assisted target cycling amplification strategy. Bimetallic RuZn-based metal-organic framework (RuZn-MOF), nucleic acid exonuclease VII (Exo VII) and tetrahedral DNA nanostructure (TDN) were used as constituent materials. First, RuZn-MOF was a substrate material with good luminescence performance and was synthesized by a hydrothermal method. Second, TDN was autonomously assembled by an adapted single-step annealing way. In this experiment, an aptamer labeled with ferrocene (Fc) at one end was firstly bound to the tip of TDN. In the presence of the target pesticide of ACE, the stronger affinity of ACE for the aptamer made the aptamer and ACE bind preferentially. At the same time, Exo VII was activated to cleave the single-stranded aptamer, resulting in ACE release and Fc detachment. As a result, Fc moved away from the electrode surface, allowing the ECL signal intensity to be restored. The limit of detection (LOD) (33.33 fg/mL) of this method was lower than those of many reported aptasensors. This strategy provides an uncomplicated and responsive technique for the detection of ACE and offers further development possibilities for detection and analysis of other biomolecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2024.115388 | DOI Listing |
NPJ Biomed Innov
September 2025
Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9 Canada.
We report a synthetic tetrahedral DNA nanocarrier (TDN) for treating bone defects and methicillin-resistant (MRSA) infection using in vitro studies. We successfully synthesized TDNs and demonstrated their excellent cytocompatibility with blood cells and immune cells. Zoledronic acid-loaded TDN displayed increased efficacy compared to free drugs in regulating bone remodeling, while vancomycin-loaded TDN showed an increased antibacterial effect against MRSA.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
A tetrahedral DNA framework-based fluorescent probe is programmed with multivalent aptamers for the precise targeting of membrane nucleolin and an initiator strand to trigger a hybridization chain reaction. Benefiting from multivalent aptamer targeting and HCR signal amplification, this probe demonstrates minimal endocytosis, enabling the reliable and amplified detection of a membrane protein biomarker.
View Article and Find Full Text PDFAnal Chem
September 2025
School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
Point-of-care (POC) detection of prostate-specific antigen (PSA) is critical for the early screening and monitoring of prostate cancer (PCa), which facilitates timely intervention and personalized treatment. However, existing POC platforms suffer from inadequate detection sensitivities, susceptibility to matrix interference, and complex sample pretreatment. To address these issues, we proposed a naked-eye and colorimetric sensing platform based on magnetic nanozyme (FeO@ZIF-67@Pt) integrated with a tetrahedral DNA framework (TDF) and alkaline phosphatase (ALP)-triggered hydrolysis reaction for PSA detection with superior sensing performances.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Provi
De novo DNA synthesis plays crucial roles in life science. Enzymatic oligonucleotide synthesis (EOS) has attracted interest due to longer synthesized chains, simple procedure, cost-effectiveness, and environmental friendliness. However, unlike chemical synthesis dominated by small molecule, the EOS relies on enzyme reacting with primers.
View Article and Find Full Text PDFNucleic Acids Res
August 2025
Department of Biological Sciences, Columbia University, New York, NY 10027, United States.
Sequence-specific interactions of transcription factors (TFs) with genomic DNA underlie many cellular processes. High-throughput in vitro binding assays coupled with machine learning have made it possible to accurately define such molecular recognition in a biophysically interpretable way for hundreds of TFs across many structural families, providing new avenues for predicting how the sequence preference of a TF is impacted by disease-associated mutations in its DNA binding domain. We developed a method based on a reference-free tetrahedral representation of variation in base preference within a given structural family that can be used to accurately predict the effect of mutations in the protein sequence of the TF.
View Article and Find Full Text PDF