98%
921
2 minutes
20
The Arctic Ocean (AO) is changing at an unprecedented rate, with ongoing sea ice loss, warming and freshening impacting the extent and duration of primary productivity over summer months. Surface microbial eukaryotes are vulnerable to such changes, but basic knowledge of the spatial variability of surface communities is limited. Here, we sampled microbial eukaryotes in surface waters of the Beaufort Sea from four contrasting environments: the Canada Basin (open ocean), the Mackenzie Trough (river-influenced), the Nuvuk region (coastal) and the under-ice system of the Canada Basin. Microbial community structure and composition varied significantly among the systems, with the most phylogenetically diverse communities being found in the more coastal systems. Further analysis of environmental factors showed potential vulnerability to change in the most specialised community, which was found in the samples taken in water immediately beneath the sea ice, and where the community was distinguished by rare species. In the context of ongoing sea ice loss, specialised ice-associated microbial assemblages may transition towards more generalist assemblages, with implications for the eventual loss of biodiversity and associated ecosystem function in the Arctic Ocean.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582671 | PMC |
http://dx.doi.org/10.1038/s41598-024-77821-9 | DOI Listing |
Environ Microbiol Rep
October 2025
Department of Biology, Marine Biology Section, University of Copenhagen, Helsingør, Denmark.
Due to climate change, sea ice more commonly retreats over the shelf breaks in the Arctic Ocean, impacting sea ice-pelagic-benthic coupling in the deeper basins. Nitrogen fixation (the reduction of dinitrogen gas to bioavailable ammonia by microorganisms called diazotrophs) is reported from Arctic shelf sediments but is unknown from the Arctic deep sea. We sampled five locations of deep-sea (900-1500 m) surface sediments in the central ice-covered Arctic Ocean to measure potential nitrogen fixation through long-term (> 280 days) stable-isotope (N) incubations and to study diazotroph community composition through amplicon sequencing of the functional marker gene nifH.
View Article and Find Full Text PDFBiogeochemistry
September 2025
Department of Earth Sciences, Uppsala University, Uppsala, 75236 Sweden.
Unlabelled: Ocean surface gravity waves facilitate gas exchanges primarily in two ways: (1) the formation of bubbles during wave breaking increases the surface area available for gas exchange, promoting CO transfer, and (2) wave-current interaction processes alter the sea surface partial pressure of CO and gas solubility, consequently affecting the CO flux. This study tests these influences using a global ocean-ice-biogeochemistry model under preindustrial conditions. The simulation results indicate that both wave-current interaction processes and the sea-state-dependent gas transfer scheme-which explicitly accounts for bubble-mediated gas transfer velocity-influence the air-sea CO flux, with substantial spatial and seasonal variations.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Korea Polar Research Institute, 26 Songdomirae-ro, Incheon 21990, Republic of Korea.
Here we present the study of 48 new dinoflagellate cyst assemblages from the west Antarctic shelf sediments on a wide longitudinal scale, with a greater representation of ice-proximal sites, and provide a comprehensive overview of their distributional patterns and multiple environmental forcing factors. We find a strong spatial heterogeneity in the dinoflagellate cyst distribution patterns; 1) the northern Antarctic Peninsula region is dominated by Islandinium? minutum, Selenopemphix antarctica and Brigantedinium spp. in association with meltwater-induced stratification and high diatom productivity, 2) the Bellingshausen-Amundsen Seas is dominated by Gymnodinium microreticulatum and Selenopemphix sp.
View Article and Find Full Text PDFCamb Prism Coast Futur
November 2024
City of Philadelphia, Offices of Sustainability and Climate Resilience, 1515 Arch Street, Philadelphia, PA 19102, USA.
We synthesize sea-level science developments, priorities and practitioner needs at the end of the 10-year World Climate Research Program Grand Challenge 'Regional Sea-Level Change and Coastal Impacts'. Sea-level science and associated climate services have progressed but are unevenly distributed. There remains deep uncertainty concerning high-end and long-term sea-level projections due to indeterminate emissions, the ice sheet response and other climate tipping points.
View Article and Find Full Text PDFJ Environ Qual
August 2025
US EPA, Office of Policy, National Center for Environmental Economics, Washington, USA.
Eutrophication enhances emissions of greenhouse gases (GHGs) from surface waters. Policies designed to ameliorate eutrophication by limiting nutrient loadings to surface waters can reduce these GHG emissions and, in turn, reduce future climate damages (e.g.
View Article and Find Full Text PDF