98%
921
2 minutes
20
Objective: To assess the viability of using ultra-low radiation and contrast medium (CM) dosage in aortic computed tomography angiography (CTA) through the application of low tube voltage (60kVp) and a novel deep learning image reconstruction algorithm (ClearInfinity, DLIR-CI).
Methods: Iodine attenuation curves obtained from a phantom study informed the administration of CM protocols. Non-obese participants undergoing aortic CTA were prospectively allocated into two groups and then obtained three reconstruction groups. The conventional group (100kVp-CV group) underwent imaging at 100kVp and received 210 mg iodine/kg in combination with a hybrid iterative reconstruction algorithm (ClearView, HIR-CV). The experimental group was imaged at 60kVp with 105 mg iodine/kg, while images were reconstructed with HIR-CV (60kVp-CV group) and with DLIR-CI (60kVp-CI group). Student's t-test was used to compare differences in CM protocol and radiation dose. One-way ANOVA compared CT attenuation, image noise, SNR, and CNR among the three reconstruction groups, while the Kruskal-Wallis H test assessed subjective image quality scores. Post hoc analysis was performed with Bonferroni correction for multiple comparisons, and consistency analysis conducted in subjective image quality assessment was measured using Cohen's kappa.
Results: The radiation dose (1.12 ± 0.23mSv vs. 2.03 ± 0.82mSv) and CM dosage (19.04 ± 3.03mL vs. 38.11 ± 6.47mL) provided the reduction of 45% and 50% in the experimental group compared to the conventional group. The CT attenuation, SNR, and CNR of 60kVp-CI were superior to or equal to those of 100kVp-CV. Compared to the 60kVp-CV group, images in 60kVp-CI showed higher SNR and CNR (all P < 0.001). There was no difference between the 60kVp-CI and 100kVp-CV group in terms of the subjective image quality of the aorta in various locations (all P > 0.05), with 60kVp-CI images were deemed diagnostically sufficient across all vascular segments.
Conclusion: For non-obese patients, the combined use of 60kVp and DLIR-CI algorithm can be preserving image quality while enabling radiation dose and contrast medium savings for aortic CTA compared to 100kVp using HIR-CV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acra.2024.10.042 | DOI Listing |
Stroke
September 2025
Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China (H.Z., K.H., Q.G.).
Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.
Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.
J Orthop Sports Med
August 2025
Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, 91766, USA.
Rotator cuff tendinopathy is a common cause of shoulder pain and dysfunction, presenting in two primary forms: calcific and non-calcific. These subtypes differ significantly in their pathophysiology, clinical manifestations, and natural history, necessitating tailored diagnostic and therapeutic approaches. This review delineates the clinical presentations of calcific rotator cuff tendinopathy (RCCT), characterized by distinct pre-calcific, calcific, and post-calcific stages, and contrasts them with the more insidious, degenerative course of non-calcific rotator cuff tendinopathy.
View Article and Find Full Text PDFRadiol Adv
September 2024
Department of Radiology, Northwestern University and Northwestern Medicine, Chicago, IL, 60611, United States.
Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.
Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.
Comput Struct Biotechnol J
August 2025
Institut de Recherche en Cancérologie de Montpellier (IRCM), Équipe Labellisée Ligue Contre le Cancer, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
Digital twins (DTs) are emerging tools for simulating and optimizing therapeutic protocols in personalized nuclear medicine. In this paper, we present a modular pipeline for constructing patient-specific DTs aimed at assessing and improving dosimetry protocols in PRRT such as therapy. The pipeline integrates three components: (i) an anatomical DT, generated by registering patient CT scans with an anthropomorphic model; (ii) a functional DT, based on a physiologically-based pharmacokinetic (PBPK) model created in SimBiology; and (iii) a virtual clinical trial module using GATE to simulate particle transport, image simulation, and absorbed dose distribution.
View Article and Find Full Text PDFJB JS Open Access
September 2025
Department of Orthopaedic Surgery, St. Luke's University Health Network, Bethlehem, Pennsylvania.
Background: The use of artificial intelligence platforms by medical residents as an educational resource is increasing. Within orthopaedic surgery, older Chat Generative Pre-trained Transformer (ChatGPT) models performed worse than resident physicians on practice examinations and rarely answered questions with images correctly. The newer ChatGPT-4o was designed to improve these deficiencies but has not been evaluated.
View Article and Find Full Text PDF