A novel ternary hydrophobic deep eutectic solvent over a wide pH range for lithium recovery.

J Hazard Mater

CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Owing to the crucial role of lithium (Li) in green technology and energy storage, the global demand for Li is constantly increasing. This article provides a new strategy for recovering Li using ternary hydrophobic deep eutectic solvent (HDES). The novel HDES was composed of 2-thiophenyltrifluoroacetone (HTTA), trioctylphosphine oxide (TOPO), and N,N-diethyldecanamide (DDA), and exhibited high efficiency and selectivity for extracting Li from aqueous solutions. This study systematically evaluated the effect of the initial aqueous pH on the Li extraction efficiency, revealing the stable performance of HDES in the pH range 3-13. Compared to the highly alkaline environment required for Li extraction, the pH characteristics of the HDES provide a wider range of applications and a more environmentally friendly alternative. The HDES exhibited rapid extraction kinetics, achieving equilibrium within 10 min and maintaining phase stability without emulsification. The main mechanism of selective Li extraction is the electrostatic interaction between Li(I) and TTA. The interactions between Li(I) and both TOPO and DDA were confirmed by Fourier transform infrared (FT-IR) spectroscopy, thereby improving the selectivity and extraction efficiency. The countercurrent extraction process demonstrated an impressive Li extraction rate of 98.704 % and a Li(I)/Na(I) separation factor of 10643.14 with industrial LiCO mother liquor, highlighting the application potential of the ternary HDES. The excellent performance of the HDES over a wide pH range provides more opportunities for its application, and its high efficiency, selectivity, and environmental characteristics may promote Li recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.136398DOI Listing

Publication Analysis

Top Keywords

ternary hydrophobic
8
hydrophobic deep
8
deep eutectic
8
eutectic solvent
8
wide range
8
high efficiency
8
efficiency selectivity
8
extraction efficiency
8
performance hdes
8
hdes
7

Similar Publications

Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.

View Article and Find Full Text PDF

Synergistic enhancement of chitosan-diatomite composite in microalgae flocculation: Mechanistic insights into extracellular polymeric substances-mediated harvesting.

Int J Biol Macromol

September 2025

School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, China.

Chitosan is a promising bioflocculant for harvesting microalgae, its practical implementation is constrained by high dosage demands (typically >1 g/L) and suboptimal settling kinetics. And the microalgae harvesting process is susceptible to the significant influence of extracellular polymeric substances (EPS), the mechanism of which is still unclear. This study synthesized amino-functionalized chitosan-diatomite composites (APTES-CTS/DTE) and revealed the action mechanism of EPS in the flocculation of microalgae.

View Article and Find Full Text PDF

Organohydrogels (OHGs) are a class of soft materials with a biphasic structure consisting of hydrophilic and hydrophobic domains that interact with both water and organic solvents. This gives them unique properties and various applications, e.g.

View Article and Find Full Text PDF

Simvastatin is a primary cholesterol-lowering medication, but it has also been reported to possess anti-inflammatory properties. Notably, the CD18 integrins are targets for simvastatin antagonism of ligand binding, which may affect leukocyte adhesion and diapedesis. Lymphocyte-associated antigen (LFA)-1 is inhibited through an allosteric mechanism by binding the lactone form of simvastatin (simvastatin-lac) to a hydrophobic pocket in the major ligand binding domain, the alpha chain I domain.

View Article and Find Full Text PDF

This study developed a whey protein concentrate (WPC)-linoleic acid (LA)-(-)-epigallocatechin-3-gallate (EGCG) ternary complex, evaluating EGCG concentration effects (0-0.14 %, w/v) under Fenton oxidation condition. The complex suppressed WPC-LA co-oxidation in a dose-dependent manner and was maximally inhibited by 0.

View Article and Find Full Text PDF