98%
921
2 minutes
20
Cancer theranostic is the combination of diagnosis and therapeutic modalities for cancer treatment. It realizes a more flexible, precise and non-invasive treatment of patients. In this aspect, magnetic nanostructures (MNSs) have gained paramount importance and revolutionized the cancer management due to their unique physicochemical properties and inherent magnetic characteristics. MNSs have amazing theranostic ability starting from drug delivery to magnetic hyperthermia and magnetic resonance imaging to multimodal imaging in association with radioisotopes or fluorescent probes. Precise regulation over the synthetic process and their consequent surface functionalization makes them even more fascinating. The ultimate goal is to develop a platform that combines multiple diagnostic and therapeutic functionalities based on MNSs. This perspective has provided an overview of the state-of-art of theranostic applications of MNSs. Special emphasis has been dedicated towards the importance of synthetic approaches of MNSs as well as their subsequent surface engineering and integration with biological/therapeutic molecules that decide the final outcomes of the efficacy of MNSs in theranostic applications. Moreover, the recent advancements, opportunities and allied challenges towards clinical applications of MNSs in cancer management have been demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2024.103320 | DOI Listing |
Mikrochim Acta
September 2025
The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Binhu Hospital of Hefei, Hefei, 230061, P. R. China.
Lung cancer, as one of the cancers with the highest morbidity and mortality rates in the world, requires accurate detection of its vital serum marker, neuron-specific enolase (NSE), which is a key challenge for early detection of lung cancer. However, traditional chemiluminescence immunoassay (CLIA) methods rely on labeled antibodies (Abs) and suffer from complex operations and high costs. In this work, a label-free CLIA based on CL-functionalized mesoporous magnetic nanoparticles (CuFeO@mSiO-Cys-Luminol-Au NPs) is developed for the rapid and sensitive detection of NSE.
View Article and Find Full Text PDFBiosens Bioelectron
August 2025
Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China. Electronic address:
A critical prerequisite for translating circulating tumor cells (CTCs) detection technologies into clinical practice is achieving high-efficiency capture and non-destructive release of low-abundance CTCs in blood. In recent years, innovative designs and surface modification of bioinspired topological micro/nanostructured materials have provided efficient solutions to capture and release CTCs. Motivated by pollen morphology and multimodal regulation, this study designed pollen-inspired spiky topological magnetic nanoparticles (IP-GSMNs) based on dual-recognition interface and intelligent-response modulation for high-efficiency capture and non-destructive release of CTCs from peripheral whole blood.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
September 2025
Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia.
Synthetic dyes, such as methylene blue (MB), are increasingly becoming sources of water pollution and require better treatment strategies. This study describes an eco-friendly method for methylene blue degradation using green synthesized iron oxide nanoparticles form Ureibacillus chungkukjangi. This bacterium was isolated from clinical samples and identified using 16S rRNA gene amplification and sequenced using Sanger sequencing technology.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, carrer dels Til·lers, Cerdanyola del Vallès, 08193 Barcelona, Spain.
The functional properties of nanocrystals can be finely tuned through controlled morphology and size. However, this can be challenging for metastable nanostructures that require harsh synthesis conditions, such as high temperatures. Here, we present a method for preparing large ε-FeO nanorods that are not affected by magnetic relaxation.
View Article and Find Full Text PDFRSC Adv
August 2025
Assistant Professor, Department of Chemistry, School of Applied Sciences & Humanities, Vignan's Foundation for Science, Technology and Research Vadlamudi Guntur India-522213 +91 863 2344777.
We report the synthesis and characterization of thiol-stabilized gold nanoparticles (AuNPs), functionalized with bis(pyrazole)pyridine ligands (L4 and 10), and their subsequent assembly into rectangular nano/microstripes using a lithographically controlled wetting (LCW) technique. The resulting microstructured patterns, with widths of ∼2 μm and heights of 150-200 μm, were employed to simultaneously explore spin crossover (SCO) behavior and surface-enhanced Raman scattering (SERS) properties. Compound 10 exhibited SCO behavior with a molar magnetic susceptibility () of ∼3.
View Article and Find Full Text PDF