98%
921
2 minutes
20
Phosphorus (P) is a limiting factor in fresh waters and is also the main cause of water eutrophication and deterioration, However, the practical effect of elevated P level on bacterioplankton is less evaluated. In this study, we investigated the bacterioplankton in a 96 hours microcosm experiment with P additions in two forms (organic/inorganic P, OP/IP) and three levels (final conc., 0.040, 0.065 and 0.125 g/L), aiming to find out the response pattern of bacterioplankton in coping with the increasing P levels. Results showed a more dramatic change of water properties and bacterioplankton between P forms (OP and IP) than among the addition levels, and a more remarkable effect of OP addition than the IP. Both OP and IP treatments significantly decreased the water pH, dissolved oxygen (DO), Electrical Conductivity (EC), Nitrate Nitrogen (NO-N) and Total Organic Carbon (TOC), and reduced the α-diversity of bacterioplankton and relative abundance of Cyanobacteria, but increased the abundance of Proteobacteria. The IP addition decreased Actinobacteria abundance (especially for HgcI) and showed higher denitrification potentials, while the OP addition depressed the Bateroidota and exhibited lowed methylotrophic functions, but such trends decreased with increasing addition concentrations. The network analysis showed that both IP and OP additions increased the proportion of positively correlated edges and reduced the network complexity and stability, but the OP network was more stable than the IP network. The study clarifies the response pattern of bacterioplankton to the P input with different forms and levels, and deepens our understanding of the eutrophication process, which provides a scientific basis for the management and control of freshwater lakes facing eutrophication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.122645 | DOI Listing |
Microbiologyopen
October 2025
Department of Biochemistry, Faculty of Science and Technology, Chiromo Campus, Off Riverside Drive, University of Nairobi, Nairobi, Kenya.
Alkaline pectinases are in demand in industrial processes that require the degradation of plant pectins at high pH, for example, removal of pectin stains from fabrics, cutlery, and porcelain; treatment of pectic wastewater; fermentation of coffee, tea, and cocoa; manufacture of poultry and animal feeds, and processing of textiles, and so forth. The present study aimed to (a) screen four alkaliphilic microbial isolates, previously obtained from samples collected around Lake Bogoria (soda lake), Baringo County, Kenya, for alkaline pectinases, and (b) characterize the pectinase-producers. The screening data revealed that all the isolates were pectinase producers, exhibiting catalytic activities that ranged from 1.
View Article and Find Full Text PDFEnviron Toxicol Chem
September 2025
Univ. Savoie Mont Blanc, CNRS. EDYTEM.
The environmental impact of Tire and Road Wear Particles (TRWP), arising from tire-road friction, has raised significant concerns. Like microplastics, TRWP contaminate air, water, and soil, with considerable annual emissions and runoff into freshwater ecosystems. Among TRWP compounds, 6PPD-Q, leached from tire particles, shows varying toxicity across species, notably affecting fish and invertebrates.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Centre for Applied Water Science, University of Canberra, ACT, Australia; Department of Zoology, University of Otago, Dunedin, New Zealand.
One mechanism for improving the resilience of freshwater systems affected by climate change is to use environmental water to support refugial habitats which allow species, ecosystems and functions to persist and recover after severe droughts. We applied systematic conservation planning (SCP) to prioritise wetlands and lakes with the aim of informing the delivery of environmental water for the creation and protection of refugia habitat in the Murray-Darling Basin, Australia. SCP uses a complimentary algorithm to generate planning solutions that protect all target ecological assets for the lowest "cost" of the management constraints considered.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of Eco-security, Yunnan University, Kunming 650091, China.
Freshwater lakes are increasingly subject to simultaneous nutrient enrichment and antibiotic pollution, yet the joint effects of these stressors on microbial network structure remain poorly characterized. This study examined the combined effects of nutrients and antibiotics on bacterial communities across eight bays in Erhai Lake, which were classified into high-, moderate-, and low-pollution zones. High-pollution bays (Haichao, Dongsha, and Shuanglang) recorded the region's highest nutrient concentrations, with chemical oxygen demand reaching 33.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China. Electronic address:
Inland water ecosystems play key roles in the production, transportation, transformation, storage, and consumption of global greenhouse gases (GHG). Different water body types exhibit spatial and temporal differences after considering factors such as season and aquatic plant life forms. The results revealed that the annual global warming potential (GWP) (Tg CO-eq yr) from swamps, rivers, lakes, and reservoirs in China were 1382.
View Article and Find Full Text PDF