Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Harsh synthetic conditions for crystalline covalent triazine frameworks (CTFs) and associated limitations on structural diversities impede not only further development of functional CTFs, but also practical large-scale synthesis. Herein, a mild and universal vapor-solid interface synthesis strategy is developed for highly crystalline CTFs employing trifluoromethanesulfonic acid vapor as catalysts. A series of highly ordered simple and functional CTFs (CTF-TJUs) can be facilely produced. In particular, the porphyrin-involved functional CTF (CTF-TJU-Por1) with high crystallinity is synthesized for the first time via this universal approach. The mechanism of vapor-catalyzed trimerization of nitrile monomers is thoroughly investigated through semi in situ characterizations. As a proof of concept, the photocatalytic performance of synthesized CTFs for water splitting is evaluated. CTF-TJU-133 exhibits significantly greater photocatalytic rates for hydrogen (4.35 µmol h) and oxygen (2.18 µmol h) evolutions during overall water splitting under visible light irradiations compared to other CTF-TJUs, representing one of the highest values among reported CTF photocatalysts. Further studies reveal that enhanced photocatalytic performance of CTF-TJU-133 results from optimized band structure, extended visible-light absorption, and high carrier separation efficiency. This study provides a promising strategy to synthesize various simple and functional CTFs, which significantly enriched diversities of CTF family for different application purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202407782DOI Listing

Publication Analysis

Top Keywords

functional ctfs
12
vapor-solid interface
8
interface synthesis
8
highly crystalline
8
crystalline covalent
8
covalent triazine
8
triazine frameworks
8
simple functional
8
photocatalytic performance
8
water splitting
8

Similar Publications

The continuing increase in atmospheric carbon dioxide (CO), a major greenhouse gas and accelerating climate change are driving demand for innovative mitigation strategies. The photocatalytic CO reduction reaction (PCORR) presents a promising and sustainable route to convert CO into useful hydrocarbons and fuels utilizing sunlight, thereby mitigating CO emissions. This review examines the developmental aspects of light-driven CO conversion using organic polymeric photocatalysts, focusing on carbon nitrides (CNs), covalent triazine frameworks (CTFs), and covalent organic frameworks (COFs).

View Article and Find Full Text PDF

Intracellular multivesicular bodies (MVBs) act as sites of assembly and release of HIV type 1 (HIV-1) in macrophages and microglia. Recent work has shown that processing of amyloid precursor protein (APP) into a C-terminal fragment (CTF), termed C99, inhibits HIV-1 access to CD63+ MVBs and to counteract this, HIV-1 Group-specific antigen (Gag) increases C99 processing into toxic amyloids. However, the underlying reasons for this negative interplay between Gag and C99 remain unclear.

View Article and Find Full Text PDF

The emergence of infectious diseases is often associated with changes to host-pathogen ecology, and wildfires are known to profoundly modify the ecology of terrestrial and freshwater ecosystems. Nevertheless, few studies have employed manipulative experiments to quantify the effects of fire on infections across parasite species. In a mark-recapture study, prescribed burns did not significantly affect the densities of Cuban tree frog (CTF; Osteopilus septentrionalis) definitive hosts.

View Article and Find Full Text PDF

Hybrid materials based on porous organic polymers (POPs) and metal-organic frameworks (MOFs) are increasing attention for advanced separation processes due to the possibility to combine their properties. POPs provide high surface areas, chemical stability, and tunable porosity, while MOFs contribute a high variety of defined crystalline structures and enhanced separation characteristics. The combination (or hybridization) with PIMs gives rise to mixed-matrix membranes (MMMs) with improved permeability, selectivity, and long-term stability.

View Article and Find Full Text PDF

Pesticides are ubiquitous to human life but their residues are indispensable micropollutants that threaten human health. In recent years, the global use of pesticides has increased significantly in recent years, and their environmental profiles have become increasingly complex as different generations of pesticides have appeared on the market. The residues of various legacy and emerging pesticides are omnipresent in both the environment and food medias.

View Article and Find Full Text PDF