98%
921
2 minutes
20
Background: Two-line hybrid wheat technology system is one way to harness wheat heterosis both domestically and internationally. Seed vigor is a crucial parameter for assessing seed quality, as enhanced seed vigor can lead to yield increments of over 20% to a certain extent. MicroRNAs (miRNAs) were known to participate in the development and vigor of seed in plants, but its impact on seed vigor in two-line hybrid wheat remains poorly elucidated.
Results: The hybrid (BS1453/11GF5135) wheat exhibited superiority in seed vigor and anti-aging capacity, compared to its male parent (11GF5135, MP) and female parent (BS1453, FP). We identified four miRNAs associated with seed vigor, all of which are novel miRNAs. The majority of targets of miRNAs were related to ubiquitin ligases, kinases, sucrose synthases and hydrolases, involving in starch and sucrose metabolism, hydrolysis, catalysis, plant hormone signal transduction, and other pathways, which played crucial roles in seed development. Additionally, we also found miR531 was differentially expressed in both male parent and hybrid, and its target gene was a component of the E1 subunit of α-ketoate dehydrogenase complex, which interacted with dihydrolipoamide acetyltransferase (E2) and dihydrolipoyl dehydrogenase (E3). Finally, We established a presumptive interaction model to speculate the relationship of miR531 and seed vigor.
Conclusions: This study analyzed the seed vigor of two-line hybrid wheat, and screened seed vigor-related miRNAs. Meanwhile speculated the genetic relationship of hybrid and parents, in terms of miRNAs. Consequently, the present study provides new insights into the miRNA-mediated gene and protein interaction network that regulates seed vigor. These findings hold significance for enhancing the yield and quality of two-line hybrid wheat, facilitating its future applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515737 | PMC |
http://dx.doi.org/10.1186/s12864-024-10878-y | DOI Listing |
BMC Genomics
September 2025
Wheat Research Center, Henan Institute of Science and Technology, Xinxiang, 453000, China.
Background: As wheat is a globally important staple crop, the molecular regulatory network underlying heterosis in wheat remains incompletely understood. The flag leaf is the primary source of photoassimilates during grain filling and plays a crucial role in yield formation. However, the genetic mechanisms linking flag leaf development to heterosis are still unclear.
View Article and Find Full Text PDFFront Plant Sci
August 2025
College of Engineering, Nanjing Agricultural University, Nanjing, China.
Introduction: With the growing severity of global salinization, assessing plant growth vitality under salt stress has become a critical aspect in agricultural research.
Methods: In this paper, a method for calculating the leaf area and leaf growth rate of okra based on the YOLOv11-HSECal model is proposed, which is used to evaluate the activity of okra at the seedling stage. A high-throughput, Full-Time Sequence Crop Germination Vigor Monitoring System was developed to automatically capture image data from seed germination to seedling growth stage, while maintaining stable temperature and lighting conditions.
Environ Pollut
August 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu Province, China; Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, College of Agriculture, Nanjing Agricultural Un
The implementation of appropriate flame-spraying treatment on used polyethylene (PE) mulch film is a potential method for the rapid abatement of PE contamination in dryland fields. This study utilized self-made flame-spraying equipment to prepare thermo-oxidatively aged PE microplastics (aPE-MPs), with their structural properties characterized through analytical techniques. The effects of varying concentrations of aPE-MP suspensions (corresponding to residual film levels equivalent to 5-300 years of continuous mulching) on seed germination and seedling growth of field pea (Pisum sativum var.
View Article and Find Full Text PDFTheor Appl Genet
August 2025
Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution (GQE) - Le Moulon, 91190, Gif-Sur-Yvette, France.
Differentiation between Stiff Stalk and Non-Stiff Stalk heterotic groups increased significantly over time, while genetic diversity within both groups declined, highlighting the impact of long-term selection in hybrid maize breeding. Differentiation between Stiff Stalk and Non-Stiff Stalk heterotic groups increased significantly over time, while genetic diversity within both groups declined, highlighting the impact of long-term selection in hybrid maize breeding. The separation of germplasm into complementary heterotic genetic pools is fundamental to modern hybrid breeding programs.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
September 2025
Genetic Department, Faculty of Agriculture, Beni-Suef University, Beni Suef 62513, Egypt.
Background: Chia (Salvia hispanica L.) is recognized for its nutritional value and health-promoting compounds, including flavonoids.
Aim: This study utilized DNA barcoding to identify and differentiate two novel chia genotypes, CACH-W and CACH-B, providing insights for breeding programs and genetic resource conservation (CA refers to the developer and CH refer to Chia).