Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: The cholinergic system is distributed in the nervous system, mediating electrical conduction through acetylcholine (ACh). This study aims to identify whether the heart possesses an intact endogenous cholinergic system and to explore its electrophysiological functions and relationship with arrhythmias in both humans and animals.

Methods: The components of the heart's endogenous cholinergic system were identified by a combination of multiple molecular cell biology techniques. The relationship of this system with cardiac electrical conduction and arrhythmias was analysed through electrophysiological techniques.

Results: An intact cholinergic system including ACh, ACh transmitter vesicles, ACh transporters, ACh metabolic enzymes, and ACh receptors was identified in both human and mouse ventricular cardiomyocytes (VCs). The key components of the system significantly regulated the conductivity of electrical excitation among VCs. The influence of this system on electrical excitation conduction was further confirmed both in the mice with α4 or α7 nicotinic ACh receptors (nAChRs) knockouts and in the monolayers of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, ACh induced an inward current through nAChRs to reduce the minimum threshold current required to generate an action potential in VCs, thereby enhancing the excitability that acts as a prerequisite for electrical conduction. Importantly, defects in this system were associated with fatal ventricular arrhythmias in both patients and mice.

Conclusions: This study identifies an integrated cholinergic system inherent to the heart, rather than external nerves that can effectively control cardiac electrical conduction. The discovery reveals arrhythmia mechanisms beyond classical theories and opens new directions for arrhythmia research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959186PMC
http://dx.doi.org/10.1093/eurheartj/ehae699DOI Listing

Publication Analysis

Top Keywords

cholinergic system
24
electrical conduction
20
endogenous cholinergic
12
system
11
ach
8
cardiac electrical
8
ach receptors
8
electrical excitation
8
electrical
7
conduction
6

Similar Publications

Environmental concentration effects of imidacloprid on the renal system of Xenopus laevis: Multifaceted insights from histopathology to molecular biology.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:

Given the widespread presence of imidacloprid in aquatic environments and the limited research on its impact on amphibian renal health, in this study, we investigated the effects of this commonly used neonicotinoid insecticide on kidney function and molecular mechanisms in Xenopus laevis. Employing a 28-day exposure model, histopathological changes and enzymatic responses induced by two concentrations of imidacloprid were examined, along with gene expression alterations and metabolic disruptions at environmentally relevant levels. The results highlighted significant renal histopathological damage and changes in key enzymes involved in oxidative stress and neurotoxicity, such as superoxide dismutase, glutathione S-transferase, and acetylcholinesterase.

View Article and Find Full Text PDF

Background: Dorsal root ganglion (DRG) pulsed radiofrequency (PRF) is a minimally invasive neuromodulation technique used for the management of chronic radicular pain. While its analgesic effects are well-documented, its impact on sensorimotor integration at the cortical level remains unclear. This study aimed to investigate whether DRG PRF modulates sensorimotor integration via the cholinergic system using the Short-Latency Afferent Inhibition (SAI) paradigm.

View Article and Find Full Text PDF

Paradoxical kinesia-the temporary alleviation of motor deficits by powerful, urgent stimuli in Parkinson's disease (PD)-remains poorly understood at the neural circuit level. Through chemo-genetic ablation of tyrosine hydroxylase-expressing neurons in larval zebrafish and brain-wide calcium imaging under head-fixed, tail-free conditions, we uncovered a neural mechanism underlying this phenomenon. While catecholamine (CA)-deficient larvae exhibited severe locomotor deficits during free swimming, they showed paradoxical recovery of tail movements during whole-brain neural activity imaging.

View Article and Find Full Text PDF

Alzheimer's disease (AD) remains a major neurodegenerative disorder characterized by progressive cognitive decline, amyloid- (Aβ) aggregation, tau pathology, oxidative stress, and chronic neuroinflammation. In recent years, the dietary flavonoid naringenin, abundant in citrus fruits, has gained attention as a multi-target neuroprotective agent with potential application in AD therapy. Preclinical studies demonstrate that naringenin exhibits robust antioxidant activity, notably through activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway, which reduces ROS and preserves mitochondrial integrity.

View Article and Find Full Text PDF

This study aimed to examine the protective and antioxidant properties of a Teucrium polium leaf extract against acute kidney damage caused by nicotine in male mice. A total of 24 male Swiss albino mice were divided into four groups. The control group (oral solution of 0.

View Article and Find Full Text PDF