98%
921
2 minutes
20
The specific capacity of Li- and Mn-rich layered oxide (LMROs) cathodes can be enhanced by the oxidation of lattice oxygen at high voltages. Nevertheless, an irreversible oxygen loss emerges with cycling, which triggers interlocking surface/interface issues and results in the fast deterioration of cycling performance. Herein, we prepare a surface modified LMRO electrode by one step doctor-blade casting and introducing a benzoquinone species DBBQ redox couple. The electrochemical test shows that the DBBQ-modified electrode has a high reversible capacity (>320 mAh g) and excellent rate performance, while the cyclic stability has been significantly improved as well. The capacity retention reaches as high as 93.3% after 500 cycles at 1 C. Mechanism analysis shows that DBBQ can not only play a redox couple in LMROs which achieves the adsorption and reduction of surface oxygen gas but also significantly enhance anionic redox in the bulk, thus realizing extraordinary capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c02588 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.
The β-adrenergic receptor (βAR), a prototype G protein-coupled receptor, controls cardiopulmonary function underpinning O delivery. Abundance of the βAR is canonically regulated by G protein-coupled receptor kinases and β-arrestins, but neither controls constitutive receptor levels, which are dependent on ambient O. Basal βAR expression is instead regulated by the prolyl hydroxylase/pVHL-E3 ubiquitin ligase system, explaining O responsivity.
View Article and Find Full Text PDFAcc Chem Res
September 2025
Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.
ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry, Jadavpur University, Kolkata - 700032, India.
An interesting ruthenium(III) complex, -[Ru(HL)Cl(PPh)], has been synthesized using a redox-active tetradentate bis-azo diamine ligand (HL). This complex represents the first example of a structurally robust, air- and moisture-stable coordination compound featuring a redox non-innocent ligand that provides a unique N4 donor set comprising both strong π-acidic (azo) and σ-donating (amido) groups. The complex has been comprehensively characterized by elemental analysis, various spectroscopic techniques, and single-crystal X-ray diffraction (SCXRD) studies.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Materials Science and Engineering, Anhui University, Hefei, 230601, China.
Modulating the electronic structure of catalysts to maximize their power holds the key to address the challenges faced by zinc-iodine batteries (ZIBs), including the shuttle effect and slow redox kinetics at the iodine cathode. Herein, oxygen vacancies is innovatively introduced into CoO lattice to create high-spin-state Co active sites in nonstoichiometric CoO nanocrystals supported by carbon nanofibers (H-CoO/CNFs). This simple strategy intensifies crystal field splitting of Co 3d orbitals, optimizing the spin-orbital coupling between Co 3d orbitals and iodine species.
View Article and Find Full Text PDFChemistry
September 2025
Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der Ruhr, Germany.
In this study, we seek to deepen the understanding of the Fe effect in Ni-oxyhydroxide-mediated oxygen evolution reaction (OER) electrocatalysis in alkaline conditions, where extremely small amounts of Fe can have a dramatic impact on catalytic performance. For this purpose, Density Functional Theory (DFT) electronic structure calculations with implicit solvation description is employed in a constant pH/potential simulation framework. Nanoparticle models are considered for the nickel-based oxyhydroxide material with different degrees of Fe incorporation, and the pH/U-dependent interface structure is studied.
View Article and Find Full Text PDF