98%
921
2 minutes
20
Finding advanced technologies to store solar energy in chemical bonds efficiently is of great significance for the sustainable development of our society. The recently reported photocatalyst-microbe hybrid (PMH) system couples photocatalysts intimately with microbes and endows heterotrophic microbes with light-harvesting capacity. Generally, when PMH systems are exposed to light, photocatalytic reactions occur on the surface of photocatalysts and the photogenerated electrons enter microbial cells to promote the generation of energy carriers (such as nicotinamide adenine dinucleotide phosphate hydrogen and adenosine triphosphate) and the following chemical synthesis. PMH system applications have expanded from synthesizing value-added products (chemicals, fuels, and polymers) to treating pollutants. However, the successful operation of the PMH system relies on the timely eradication of the photogenerated holes as they recombine with the photogenerated electrons and cause the photocorrosion of the photocatalyst. This review summarizes the strategies for scavenging the photogenerated holes in PMH systems and provides insight into the current gaps and outlooks for future opportunities in this field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c12355 | DOI Listing |
ACS Omega
September 2025
College of Materials and Chemical Engineering, Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, West Anhui University, Lu'an, Anhui 237012, P. R. China.
Photo-Fenton oxidation, as a promising wastewater treatment technology, suffers from double barriers: the sluggish Fenton catalytic rate of transition metal ions and inefficient visible light absorption, both of which severely constrain the performance enhancement of catalytic systems. Therefore, accelerating electron transfer processes and broadening optical absorption spectra have become critical scientific challenges for practical implementation. Herein, a composite catalyst system based on Au-Ag-Cu trimetallic species codoped on hydroxyapatite (HAp) was reported via an ion/ligand impregnation method.
View Article and Find Full Text PDFScience
September 2025
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
Producing olefins by carbon dioxide (CO) hydrogenation is a long-standing goal. The usual products are multicarbon mixtures because the critical step of heterolytic hydrogen (H) dissociation at high temperatures complicates selectivity control. In this study, we report that irradiating gold-titanium dioxide at 365 nanometers induces heterolytic H dissociation at ambient temperature.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
August 2025
Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece.
The present work elucidates the role of lattice oxygen vacancies (Vs) in SrTiO (STO) nanoparticles on the spin dynamics of photogenerated charge carriers (electrons/holes, e/h) and on the photocatalytic hydrogen (H) evolution from HO. V-enriched STO materials (V-STO) were synthesized via anoxic flame spray pyrolysis (A-FSP) technology that allowed production of a library of SrTiO nanomaterials with controlled V concentrations. The optimal V-STO materials exhibited a 200% increase in photocatalytic H production rates compared with pristine STO.
View Article and Find Full Text PDFNat Commun
September 2025
State Ley Laboratory of Integrated Optoelectronics, Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, School of Physics, Northeast Normal University, Changchun, China.
Single-pixel imaging is emerging as a promising alternative to traditional focal plane array technologies, offering advantages in compactness and cost-effectiveness. However, the lack of solar-blind photodetectors combining fast-response and high-sensitivity has constrained their application in the deep ultraviolet spectrum. This work introduces a self-powered solar-blind photodetector based on a heterostructure comprising a GaO photosensitive layer, an AlN barrier layer, and an N-polar AlGaN:Si contact layer.
View Article and Find Full Text PDFJ Environ Manage
August 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Gyeongbuk, Republic of Korea. Electronic address:
The present review focuses on the bismuth-based heterojunction photocatalysts for the degradation of tetracycline (TC) antibiotic. The frequent usage of antibiotics causes several environmental and health concerns due to their widespread occurrence and persistence in aquatic ecosystems. In this context, bismuth-based photocatalysts have extended noteworthy interest for their tunable structures, visible-light activity, suitable band gap energies, and unique physicochemical properties.
View Article and Find Full Text PDF