Transport of microplastics treated with dielectric barrier discharge (DBD) plasma in saturated porous media.

J Colloid Interface Sci

College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China. Electronic address: xqyin@nwsuaf

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The performance of discharge plasma in treating organic pollutants and micro-organisms in water is impressive. When discharge plasma is used to treat polluted water containing organic pollutants and microorganisms, the presence of a certain amount of microplastics (MPs) in the water is unavoidable due to the complexity of the components contained in the water and the prevalence of MPs. MPs, as one of the pollutants that are difficult to be degraded by discharge plasma, undergo physical and chemical changes that increase their risk in the environment after treatment. Therefore, it is necessary to understand the fate of MPs after being treated with discharge plasma. In this study, the surface morphology of plastics before and after discharge plasma treatment was observed by scanning electron microscopy (SEM). The plastics after discharge plasma treatment were characterized by Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) to determine the changes in oxygen-containing functional groups on the surface. The recovery of microplastics (MPs) in saturated porous media under different physicochemical and plasma oxidation conditions was investigated by column experiments. It has been shown that MPs exhibit increased recovery under conditions of increased flow rate and pH. A decrease in recovery was observed at elevated ionic strength and co-existing cation valence. High voltages and low air flow rates increase the oxidation of MPs by increasing the thermal effects of the dielectric barrier discharge (DBD) plasma system, the amount of reactive oxygen species (ROS) and the intensity of ultraviolet ray (UV) irradiation. The mobility of MPs is enhanced by a combination of these factors. The advection-dispersion equation (ADE) fits the transport data of MPs well. The interaction energy between quartz sand and MPs was calculated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. This study provides a new perspective on the potential risks of discharge plasma in water treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.10.030DOI Listing

Publication Analysis

Top Keywords

discharge plasma
28
plasma
10
mps
10
discharge
9
dielectric barrier
8
barrier discharge
8
discharge dbd
8
dbd plasma
8
saturated porous
8
porous media
8

Similar Publications

Levofloxacin-induced seizure susceptibility involves both enhanced glutamatergic and impaired GABAergic synaptic function.

Brain Res

September 2025

Department of Geriatric Rehabilitation, Clinical Research Center for Geriatric Disorders of Guangxi Zhuang Autonomous Region, Guangxi, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No 85 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China. Electronic address: 13657813091@163

Levofloxacin (LVFX)-associated seizures are thought to arise from disrupted excitatory-inhibitory balance, but the underlying synaptic mechanisms remain unclear. This study investigated how LVFX alters both glutamatergic and GABAergic transmission to promote neuronal hyperexcitability. We combined in vitro and in vivo approaches using primary cortical neurons treated with LVFX and adult rats administered LVFX.

View Article and Find Full Text PDF

Dual-Mode Hybrid Discharge Plasma-Activated Injectable Hydrosol for Enhanced Immunotherapeutic Cancer Therapy.

Adv Healthc Mater

September 2025

Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

Although cold atmospheric plasma is a promising therapeutic technique for tumor immunotherapy via reactive oxygen and nitrogen species (RONS), the challenges associated with the generation and delivery of these RONS hamper clinical adoption. Herein, a dual-mode hybrid discharge plasma-activated sodium alginate hydrosols (PAH) is proposed to enhance the antitumor immune response. Gaseous highly reactive RONS are generated by dual-mode hybrid plasma produced by mixed O and NO modes, which are converted into aqueous RONS in PAH via gas-liquid reactions between plasma and hydrosols.

View Article and Find Full Text PDF

In ammonia synthesis, a new reaction system that does not use hydrogen (H) as a raw material, such as the plasma/liquid (P/L) reaction, contributes to creating a sustainable chemical industry. The P/L reaction is intended to abstract hydrogen atoms from water molecules to synthesize ammonia under ambient conditions without any catalysts but using electrically activated nitrogen species in the plasma. Therefore, the energy transfer process leading to nitrogen activation is key to the P/L reaction.

View Article and Find Full Text PDF

Red yeast rice (RYR), a commonly used supplement with statin-like properties, is generally considered safe but may cause severe adverse effects such as rhabdomyolysis. We report a rare case of severe RYR-induced rhabdomyolysis complicated by acute kidney injury (AKI) and respiratory failure, with diaphragmatic dysfunction as a key contributing factor. A 78-year-old woman developed progressive proximal muscle weakness, dyspnea, and tea-colored urine after taking RYR (2 g/day) for 1 month.

View Article and Find Full Text PDF

Background: Traditional sample introduction strategies in trace element analysis include either liquid nebulization or chemical vapor generation (CVG). Recently, plasma-mediated vapor generation (PMVG) has emerged as an elegant alternative, producing volatile species through plasma interaction with liquid sample, without the need for reagents. Both CVG or PMVG generate volatile species, usually molecular structured, which require atomization for atomic spectrometry detection.

View Article and Find Full Text PDF