98%
921
2 minutes
20
Cytoskeleton remodeling which generates force and orchestrates signaling and trafficking to govern cell migration remains poorly understood, partly due to a lack of an investigation tool with high system flexibility, spatiotemporal resolution, and computational sensitivity. Herein, we developed a multimodal superresolution imaging system-based architecture-driven quantitative (ADQ) framework in spatiotemporal-angular hyperspace to enable both identification of the optimal imaging mode with well-balanced fidelity and phototoxicity and accurate postcharacterization of microtubule remodeling. In the ADQ framework, a pixel/voxel-wise metric reflecting heterogeneous intertubule alignment was proposed with improved sensitivity over previous efforts and further incorporated with temporal features to map dynamic microtubule rearrangements. The ADQ framework was verified by assessing microtubule remodeling in drug-induced (de)polymerization, lysosome transport, and migration. Different remodeling patterns from two migration modes were successfully revealed by the ADQ framework, with a front-rear polarization for individual directed migration and a contact site-centered polarization for cell-cell interaction-induced migration in an immune response model. Meanwhile, these migration modes were found to have consistent orientation changes, which exhibited the potential of predicting migration trajectory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494298 | PMC |
http://dx.doi.org/10.1073/pnas.2410688121 | DOI Listing |
Int J Nephrol Renovasc Dis
October 2024
Maverex Limited, Newcastle upon Tyne, UK.
Chronic kidney disease (CKD) remains a major public health burden and a leading cause of mortality worldwide and in the United Arab Emirates (UAE). Alongside its clinical and humanistic burden, CKD care is associated with a significant carbon footprint. In this narrative review, we present an overview of the carbon footprint of current CKD treatments and the results of an analysis estimating the carbon footprint of CKD treatments in the UAE.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang 310027, China.
Cytoskeleton remodeling which generates force and orchestrates signaling and trafficking to govern cell migration remains poorly understood, partly due to a lack of an investigation tool with high system flexibility, spatiotemporal resolution, and computational sensitivity. Herein, we developed a multimodal superresolution imaging system-based architecture-driven quantitative (ADQ) framework in spatiotemporal-angular hyperspace to enable both identification of the optimal imaging mode with well-balanced fidelity and phototoxicity and accurate postcharacterization of microtubule remodeling. In the ADQ framework, a pixel/voxel-wise metric reflecting heterogeneous intertubule alignment was proposed with improved sensitivity over previous efforts and further incorporated with temporal features to map dynamic microtubule rearrangements.
View Article and Find Full Text PDFJ Pers Assess
December 2024
School of Psychological Sciences, Macquarie University, Sydney, Australia.
This paper marks the initial phase in the development of the Attachment Defenses Questionnaire (ADQ-50), a self-report tool crafted to assess defense mechanisms associated with attachment processes, catering to both clinical and research contexts. Anchored in the theoretical framework of attachment theory, the ADQ posits that an individual's internalized attachment style plays a influential role in predicting their defense mechanisms. The paper outlines the comprehensive development and refinement process of the ADQ-50.
View Article and Find Full Text PDFChemosphere
January 2021
Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China. Electronic address:
The construction of efficient and superior adsorbed materials for the precise removal of hazardous contaminants from water have gained significant attention by the scientific community. In this work, a facile bimetallic zeolitic-imidazolate framework (CoZn-JUC-160) by using self-adjusted strategy (SAS) was developed to synthesize various N-doped Co-based hierarchical porous carbon composites through sacrificial template route. A series of highly porous magnetic materials with well-dispersed or reduced Co particle size have been fabricated by fine tuning the ratio of Co and Zn in the precursors.
View Article and Find Full Text PDFChemosphere
January 2019
Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China. Electronic address:
The adsorption capacity of three representative pharmaceutical drugs and personal care products (PPCPs) viz. diclofenac sodium (DCF), chlorpromazine hydrochloride (CLF) and amodiaquin dihydrochloride (ADQ), were preliminarily studied using a water-stable Cu(II)-based metal organic framework (MOF) [Cu(BTTA)]·2DMF (1) (HBTTA = 1,4-bis(triazol-1-yl)terephthalic acid). We also investigated the factors influencing the adsorption such as concentration, pH, contact time, temperature and dosages.
View Article and Find Full Text PDF