Multivariate growth analysis on D0-phase MnGa kagome-based topological antiferromagnets.

J Phys Condens Matter

Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The combination of antiferromagnetism and topological properties in MnX (X = Sn,Ge,Ga) offers a unique platform to explore novel spin-dependent phenomena and develop innovative spintronic devices. Here, we have systematically investigated the phase transition of MnGa thin films on SiO(001)/Si substrates under various growth parameters such as seeding layer structure, annealing conditions, and film thickness. The relatively thick MnGa films grown with Ru seeding exhibit a variety of polycrystalline hexagonal phases, including (002), and (201). The addition of a Ta layer to the conventional Ru seeding layer promotes the formation of nearly single-crystal antiferromagnetic (AF) MnGa(002) phase from the relatively thin MnGa films after annealing at 773 K. The investigation of the growth mechanism of MnGa polycrystalline thin films provides a reference strategy for exploring Mn-based AF spintronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad81a4DOI Listing

Publication Analysis

Top Keywords

spintronic devices
8
thin films
8
seeding layer
8
mnga films
8
mnga
5
multivariate growth
4
growth analysis
4
analysis d0-phase
4
d0-phase mnga
4
mnga kagome-based
4

Similar Publications

The role of electronic spin in electrocatalysis has led to the emerging field of "spin-dependent electrocatalysis". While spin effects in individual active sites have been well understood, spin coupling among multiple sites remains underexplored in electrocatalysis, which will bring forth new active sites and mechanisms. In this work, we propose a general theory to understand the spin coupling in electrocatalysis.

View Article and Find Full Text PDF

Unusual Ferromagnetic Band Evolution and High Curie Temperature in Monolayer 1T-CrTe on Bilayer Graphene.

Small

September 2025

Department of Semiconductor Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon, 24341, South Korea.

2D van der Waals ferromagnets hold immense promise for spintronic applications due to their controllability and versatility. Despite their significance, the realization and in-depth characterization of ferromagnetic materials in atomically thin single layers, close to the true 2D limit, has been scarce. Here, a successful synthesis of monolayer (ML) 1T-CrTe is reported on a bilayer graphene (BLG) substrate via molecular beam epitaxy.

View Article and Find Full Text PDF

1D electronic structures on 2D crystalline surfaces are crucial for investigating low-dimensional quantum phenomena and enabling the development of dimensionally engineered nanodevices. However, the inherent periodic symmetry of 2D atomic lattices generally leads to delocalized electronic band extending across the surface, making the creation of periodic 1D electronic states a significant challenge. Here, robust 1D electronic ordering is demonstrated in ultrathin Mn films grown on an atomically flat, non-reconstructed body-centered cubic Fe substrate.

View Article and Find Full Text PDF

Redox-active organic-inorganic hybrid electrode materials are promising candidates for eco-friendly, high-energy-density supercapacitors. The synergy between organic and inorganic components in energy storage devices has attracted considerable interest due to their complementary attributes, including flexibility, long-term stability, and high conductivity. This study presents an innovative approach for synthesizing an organic-inorganic active electrode material by grafting diazonium salts of 8-aminoquinoline (8-AQ-N ) onto CuFeO nanoparticle (NP) surfaces.

View Article and Find Full Text PDF

Competitive Chirality Induction in Two-dimensional Germanium Iodide Perovskites Enabling Highly Anisotropic Nonlinear Optical Response.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China.

Chiral metal halide perovskites (CMHPs) are a promising class of chiroptical materials with significant potential applications in chiral-optoelectronic and chiral-spintronic devices. However, their chirality induction generally stems from the incorporation of chiral ligands, which constitutes compositional diversity and functional versatility. Herein, we report a significant chiral expression resulting from two distinct mechanisms: chirality transfer induced by chiral organic cations and mirror symmetry breaking driven by stereochemically active lone pairs, both contributing to controlled chirality induction.

View Article and Find Full Text PDF