A Chemical Toolbox to Unveil Synthetic Nature-Inspired Antifouling (NIAF) Compounds.

Mar Drugs

Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The current scenario of antifouling (AF) strategies to prevent the natural process of marine biofouling is based in the use of antifouling paints containing different active ingredients, believed to be harmful to the marine environment. Compounds called booster biocides are being used with copper as an alternative to the traditionally used tributyltin (TBT); however, some of them were recently found to accumulate in coastal waters at levels that are deleterious for marine organisms. More ecological alternatives were pursued, some of them based on the marine organism mechanisms' production of specialized metabolites with AF activity. However, despite the investment in research on AF natural products and their synthetic analogues, many studies showed that natural AF alternatives do not perform as well as the traditional metal-based ones. In the search for AF agents with better performance and to understand which molecular motifs were responsible for the AF activity of natural compounds, synthetic analogues were produced and investigated for structure-AF activity relationship studies. This review is a comprehensive compilation of AF compounds synthesized in the last two decades with highlights on the data concerning their structure-activity relationship, providing a chemical toolbox for researchers to develop efficient nature-inspired AF agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433177PMC
http://dx.doi.org/10.3390/md22090416DOI Listing

Publication Analysis

Top Keywords

chemical toolbox
8
synthetic analogues
8
toolbox unveil
4
unveil synthetic
4
synthetic nature-inspired
4
nature-inspired antifouling
4
antifouling niaf
4
compounds
4
niaf compounds
4
compounds current
4

Similar Publications

Peptide-Programmable DNAzyme Converter for Artificial Autocatalytic Gene Regulation.

J Am Chem Soc

September 2025

College of Chemistry and Molecular Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, P. R. China.

The in-depth integration of gene regulation with protein modulation can enhance cellular information processing, yet it is significantly constrained by ineffective and complex protein-to-gene transduction strategies. Herein, we developed a simple protease-guided autocatalytic gene silencing platform named iPAD (intelligent peptide-programmed deoxyribonuclease) that converts the protease recognition events into versatile DNA readout signals by rationally designing a native protease-responsive cationic peptide (PP) to efficiently modulate the DNAzyme (Dz) activity. Without requiring additional chemical modifications, the multifunctional PP regulator consists simply of one cell-specific targeting peptide segment and two cationic peptide segments isolated by one protease-specific peptide substrate.

View Article and Find Full Text PDF

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF

Targeted degradation of Werner syndrome helicase (WRN) via ligand-directed covalent hydrophobic tagging.

Eur J Med Chem

September 2025

State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:

The Werner syndrome RecQ helicase (WRN) has recently emerged as a novel synthetic lethality target for microsatellite instability-high (MSI-H) cancers. However, available WRN inhibitors or degraders is still lacking so far. Particularly, chemically designed probes capable of degrading WRN irrespective of microsatellite status remain unexplored.

View Article and Find Full Text PDF

Antifungal echinocandins: Historical discovery, comprehensive structure-activity relationships, resistance mechanisms and future developments.

Eur J Med Chem

August 2025

Chemobiology and Pharmacognosy for Health (CPS) Team, Strasbourg Institute for Drug Discovery and Development (ITI IMS), Laboratory of Therapeutic Innovation (LIT), UMR 7200 CNRS/Unistra, Faculty of Pharmacy, 74, route du Rhin, Illkirch, 67400, France; University of Strasbourg Institute for Advanced

Before the 2000s, the antifungal toolbox against invasive fungal infections (IFIs) was only composed of very toxic amphotericin B, weakly selective and nearly unused 5-fluorocytosine and azoles that have been massively used in agriculture and horticulture. The emergence of resistances followed their respective launch, so many antifungals became progressively inefficient whereas the antifungal research was left behind. In the 2000s, echinocandins (ECs) were introduced as a new antifungal class of natural origin and of unprecedented mechanism of action.

View Article and Find Full Text PDF

In chemical risk assessment the human relevance of adverse health effects observed in experimental animal studies and the underlying toxicological mechanisms, i.e., adverse outcome pathways is often assumed, unless evidence suggests otherwise.

View Article and Find Full Text PDF