98%
921
2 minutes
20
The current scenario of antifouling (AF) strategies to prevent the natural process of marine biofouling is based in the use of antifouling paints containing different active ingredients, believed to be harmful to the marine environment. Compounds called booster biocides are being used with copper as an alternative to the traditionally used tributyltin (TBT); however, some of them were recently found to accumulate in coastal waters at levels that are deleterious for marine organisms. More ecological alternatives were pursued, some of them based on the marine organism mechanisms' production of specialized metabolites with AF activity. However, despite the investment in research on AF natural products and their synthetic analogues, many studies showed that natural AF alternatives do not perform as well as the traditional metal-based ones. In the search for AF agents with better performance and to understand which molecular motifs were responsible for the AF activity of natural compounds, synthetic analogues were produced and investigated for structure-AF activity relationship studies. This review is a comprehensive compilation of AF compounds synthesized in the last two decades with highlights on the data concerning their structure-activity relationship, providing a chemical toolbox for researchers to develop efficient nature-inspired AF agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433177 | PMC |
http://dx.doi.org/10.3390/md22090416 | DOI Listing |
J Am Chem Soc
September 2025
College of Chemistry and Molecular Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, P. R. China.
The in-depth integration of gene regulation with protein modulation can enhance cellular information processing, yet it is significantly constrained by ineffective and complex protein-to-gene transduction strategies. Herein, we developed a simple protease-guided autocatalytic gene silencing platform named iPAD (intelligent peptide-programmed deoxyribonuclease) that converts the protease recognition events into versatile DNA readout signals by rationally designing a native protease-responsive cationic peptide (PP) to efficiently modulate the DNAzyme (Dz) activity. Without requiring additional chemical modifications, the multifunctional PP regulator consists simply of one cell-specific targeting peptide segment and two cationic peptide segments isolated by one protease-specific peptide substrate.
View Article and Find Full Text PDFAcc Chem Res
September 2025
Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.
ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.
View Article and Find Full Text PDFEur J Med Chem
September 2025
State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:
The Werner syndrome RecQ helicase (WRN) has recently emerged as a novel synthetic lethality target for microsatellite instability-high (MSI-H) cancers. However, available WRN inhibitors or degraders is still lacking so far. Particularly, chemically designed probes capable of degrading WRN irrespective of microsatellite status remain unexplored.
View Article and Find Full Text PDFEur J Med Chem
August 2025
Chemobiology and Pharmacognosy for Health (CPS) Team, Strasbourg Institute for Drug Discovery and Development (ITI IMS), Laboratory of Therapeutic Innovation (LIT), UMR 7200 CNRS/Unistra, Faculty of Pharmacy, 74, route du Rhin, Illkirch, 67400, France; University of Strasbourg Institute for Advanced
Before the 2000s, the antifungal toolbox against invasive fungal infections (IFIs) was only composed of very toxic amphotericin B, weakly selective and nearly unused 5-fluorocytosine and azoles that have been massively used in agriculture and horticulture. The emergence of resistances followed their respective launch, so many antifungals became progressively inefficient whereas the antifungal research was left behind. In the 2000s, echinocandins (ECs) were introduced as a new antifungal class of natural origin and of unprecedented mechanism of action.
View Article and Find Full Text PDFFront Toxicol
August 2025
Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.
In chemical risk assessment the human relevance of adverse health effects observed in experimental animal studies and the underlying toxicological mechanisms, i.e., adverse outcome pathways is often assumed, unless evidence suggests otherwise.
View Article and Find Full Text PDF