Publications by authors named "Emilia Sousa"

Phytochemical investigation of the methanol extract of Clausena excavata roots led to the isolation of six pyranocoumarin derivatives, including xanthyletin (1), kinocoumarin (2), clausarin (3), nordentatin (4), dentatin (4a), and citrusarin A (5), and three carbazole alkaloids, that is, heptaphylline (6), 7-methoxymukonal (7), and clausine K (8). Seven new semisynthetic analogs of compounds 2, 3, and 4 (2a, 3b-3d, and 4b-4d) were prepared through methylation, etherification, and basic hydrolysis for biological assays. Compounds 2, 6, 3b, 3c, 4b, and 4c displayed stronger α-glucosidase inhibitory activity than the positive control, acarbose (IC 391.

View Article and Find Full Text PDF

Skin aging is mainly caused by external factors like sunlight, which triggers oxidative stress and chronic inflammation. Natural halogenated flavonoids have demonstrated anti-inflammatory properties. Inspired by the macroalgae-derived bromophenol , we investigated the anti-inflammatory potential of structure-related chalcones (-).

View Article and Find Full Text PDF

The growing threat of antibiotic resistance has made treating bacterial and fungal infections increasingly difficult. With the discovery of new antibiotics slowing down, alternative strategies are urgently needed. Siderophores, small iron-chelating molecules produced by microorganisms, play a crucial role in iron acquisition and serve as virulence factors in many pathogens.

View Article and Find Full Text PDF

Phenolic compounds, with their diverse biological activities, are widely explored as cosmetic ingredients with photoprotective, antioxidant, anti-inflammatory, and anti-hyperpigmentation properties, offering a multitargeted approach to combat photo-induced skin aging. The study analyzed 1299 cosmetic products from 2021 to 2024 to understand the market impact of phenolic compounds and their mechanism of action against photo-induced skin damage. A total of 28 active phenolic compounds were identified and the prevalence of phenolics was 13.

View Article and Find Full Text PDF

Depigmenting cosmetic products are a fast-growing segment of the health products market, driven by consumer demand to address skin hyperpigmentation. Simultaneously, interest in products with a reduced environmental impact is increasing. However, the potential environmental risks, especially in aquatic ecosystems, of depigmenting products remain unexplored.

View Article and Find Full Text PDF

α-hemolysin (HlyA) is a major exotoxin secreted by uropathogenic Escherichia coli (UPEC), known for its ability to lyse red blood cells (RBCs). Although its lytic effects are well characterized, the nonlytic alterations on RBCs, such as increased permeability to Ca, osmotic imbalance, and morphological alterations, remain less understood and may be critical in UPEC pathogenesis. This study investigates the impact of these nonlytic alterations on the rheology and mechanics of RBCs using two biomimetic microfluidic devices that model key aspects of RBCs' circulation.

View Article and Find Full Text PDF

Fungal infections are a significant contributor to global morbidity and mortality, particularly among immunocompromised patients. With the increasing prevalence of drug-resistant strains, it has become imperative to identify alternative approaches. Metal ion coordination enhances drug efficacy through novel modes of action and may hinder resistance mechanisms.

View Article and Find Full Text PDF

The pursuit of cosmetic ingredients with proven efficacy and safety that meet consumer needs drives the advancement of new products. Ascorbic acid (AA) is utilized in cosmetic products, predominantly for its potent antioxidant properties. Nonetheless, its instability compromises its efficacy.

View Article and Find Full Text PDF
Article Synopsis
  • Excessive sun exposure can lead to various skin issues like sunburn, dryness, and wrinkles, making aftersun products important for recovery.
  • This study analyzed 84 aftersun products from 41 brands in Portugal to identify effective natural and synthetic ingredients that help reduce sun damage.
  • The research highlights the popularity of compounds from terrestrial and marine sources, assesses their mechanisms of action, and emphasizes the need for both in vitro and in vivo research to validate their efficacy in addressing skin photodamage.
View Article and Find Full Text PDF

The current scenario of antifouling (AF) strategies to prevent the natural process of marine biofouling is based in the use of antifouling paints containing different active ingredients, believed to be harmful to the marine environment. Compounds called booster biocides are being used with copper as an alternative to the traditionally used tributyltin (TBT); however, some of them were recently found to accumulate in coastal waters at levels that are deleterious for marine organisms. More ecological alternatives were pursued, some of them based on the marine organism mechanisms' production of specialized metabolites with AF activity.

View Article and Find Full Text PDF

Siderophores are well-recognized low-molecular-weight compounds produced by numerous microorganisms to acquire iron from the surrounding environments. These secondary metabolites can form complexes with other metals besides iron, forming soluble metallophores; because of that, they are widely investigated in either the medicinal or environmental field. One of the bottlenecks of siderophore research is related to the identification of new siderophores from microbial sources.

View Article and Find Full Text PDF

Siderophores are small molecules of organic nature, released by bacteria to chelate iron from the surrounding environment and subsequently incorporate it into the cytoplasm. In addition to iron, these secondary metabolites can complex with a wide variety of metals, which is why they are commonly studied in the environment. Heavy metals can be very toxic when present in large amounts on the planet, affecting public health and all living organisms.

View Article and Find Full Text PDF

A recently synthesized aminated 3,4-dioxygenated xanthone (Xantifoul2) was found to have promising antifouling (AF) effects against the settlement of the macrofouler Mytilus galloprovincialis larvae. Preliminary assessment indicated that Xantifoul2 has reduced ecotoxicological impacts: e.g.

View Article and Find Full Text PDF

Global health faces a significant issue with the rise of infectious diseases caused by bacteria, fungi, viruses, and parasites. The increasing number of multi-drug resistant microbial pathogens severely threatens public health worldwide. Antibiotic-resistant pathogenic bacteria, in particular, present a significant challenge.

View Article and Find Full Text PDF

Doxorubicin (DOX; also known as adriamycin) serves as a crucial antineoplastic agent in cancer treatment; however, its clinical utility is hampered by its' intrinsic cardiotoxicity. Although most DOX biotransformation occurs in the liver, a comprehensive understanding of the impact of DOX biotransformation and its' metabolites on its induced cardiotoxicity remains to be fully elucidated. This study aimed to explore the role of biotransformation and DOX's main metabolites in its induced cardiotoxicity in human differentiated cardiac AC16 cells.

View Article and Find Full Text PDF

Depigmenting products are increasingly used to counteract skin hyperpigmentation and related psychosocial issues. This study aimed to compare different depigmenting agents-4-butylresorcinol; bakuchiol; tranexamic acid; ascorbyl glucoside; α-arbutin; and ascorbic acid-for photoreactivity; tyrosinase inhibition; and safety. Photoreactivity was assessed using the Reactive Oxygen Species assay.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common and deadly primary malignant brain tumor. Current therapies are insufficient, and survival for individuals diagnosed with GBM is limited to a few months. New GBM treatments are urgent.

View Article and Find Full Text PDF

Dysregulation of the DNA damage response may contribute to the sensitization of cancer cells to DNA-targeting agents by impelling cell death. In fact, the inhibition of the DNA repair pathway is considered a promising anticancer therapeutic strategy, particularly in combination with standard-of-care agents. The xanthonoside XGAc was previously described as a potent inhibitor of cancer cell growth.

View Article and Find Full Text PDF

Parasitic diseases still compromise human health. Some of the currently available therapeutic drugs have limitations considering their adverse effects, questionable efficacy, and long treatment, which have encouraged drug resistance. There is an urgent need to find new, safe, effective, and affordable antiparasitic drugs.

View Article and Find Full Text PDF

This work investigated the healing properties of proteins extracted of latex (HdLP) on excisional wounds. Cell toxicity of HdLP was investigated carried out in murine fibroblasts after incubation with HdLP (12.5-100 μg/ml).

View Article and Find Full Text PDF

Natural products are a very rich source for obtaining new compounds with therapeutic potential. In the search for new antiparasitic and antimicrobial agents, molecular hybrids were designed based on the structures of antimicrobial marine quinazolinones and eugenol, a natural phenolic compound. Following reports of the therapeutic potential of quinazolinones and eugenol derivatives, it was expected that the union of these pharmacophores could generate biologically relevant substances.

View Article and Find Full Text PDF

The spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) relies on host cell surface glycans to facilitate interaction with the angiotensin-converting enzyme 2 (ACE-2) receptor. This interaction between ACE2 and the spike protein is a gateway for the virus to enter host cells and may be targeted by antiviral drugs to inhibit viral infection. Therefore, targeting the interaction between these two proteins is an interesting strategy to prevent SARS-CoV-2 infection.

View Article and Find Full Text PDF

Marine natural products are well-recognized as potential resources to fill the pipeline of drug leads to enter the pharmaceutical industry. In this circumstance, marine-derived fungi are one of the unique sources of bioactive secondary metabolites due to their capacity to produce diverse polyketides and peptides with unique structures and diverse biological activities. The present review covers the peptides from marine-derived fungi reported from the literature published from January 1991 to June 2023, and various scientific databases, including Elsevier, ACS publications, Taylor and Francis, Wiley Online Library, MDPI, Springer, Thieme, Bentham, ProQuest, and the Marine Pharmacology website, are used for a literature search.

View Article and Find Full Text PDF

Doxorubicin (DOX) is a topoisomerase II inhibitor used in cancer therapy. Despite its efficacy, DOX causes serious adverse effects, such as short- and long-term cardiotoxicity. This work aimed to assess the short- and long-term cardiotoxicity of DOX and the role of inflammation and antioxidant defenses on that cardiotoxicity in a mice model.

View Article and Find Full Text PDF