Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polyimide (PI) aerogels possess significant potential for various applications due to their outstanding mechanics and thermal insulation. However, a major drawback of these aerogels is their susceptibility to moisture, which not only compromises their insulative performance but also leads to an increase in weight. To address this issue, we have developed a moisture-resistance technique by incorporating a long-chain hydrophobic barrier at the ortho position relative to the imide groups to enhance the moisture-resistance of the PI aerogels. This approach involved using a series of diamines with hydroxyl groups strategically located at the ortho position of imide groups as reactants. The resulting PI aerogels demonstrated a significant improvement in water resistance, reducing water-uptake to merely one-tenth of that recorded in unmodified samples. Furthermore, the effectiveness of this hydrophobic modification was validated through molecular dynamics simulations, which indicated a diffusion coefficient of 4.41 × 10 m/s after modification. These findings represent a considerable advancement in developing effective methods for hydrophobic modification of PI aerogels, with potential applications in aerospace, electronic communications, and environmental protection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.09.163DOI Listing

Publication Analysis

Top Keywords

hydrophobic modification
12
polyimide aerogels
8
potential applications
8
ortho position
8
imide groups
8
aerogels
6
enhancing moisture-resistance
4
moisture-resistance polyimide
4
aerogels novel
4
hydrophobic
4

Similar Publications

Research progress on calixarene/pillararene-based controlled drug release systems.

Beilstein J Org Chem

September 2025

School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.

Intelligent controlled-release drug delivery systems that are responsive to various external stimuli have garnered significant interest from researchers and have broad applications in the biomedical field. Aromatic macrocycles, including calixarenes and pillararenes, are considered ideal candidates for the construction of supramolecular drug delivery systems because of their simple synthesis, ease of modification, electron-rich and hydrophobic cavities, and highly selective molecular recognition. In recent years, numerous supramolecular drug delivery systems utilizing aromatic macrocycles have been developed.

View Article and Find Full Text PDF

During brewing processes, proteins such as lipid transfer protein 1 (LTP1) are exposed to high temperatures, which later affects the beer foam properties. To develop high-quality beer, it is therefore essential to understand the protein chemical modifications and structural alternations induced by the high temperatures and their impact on beer foam. This study characterizes heat-induced chemical modifications and changes in the molecular size distribution and structure of LTP1 and its lipid-bound isoform, LTP1b, using size-exclusion chromatography and reverse-phase chromatography/mass spectrometry.

View Article and Find Full Text PDF

Effect of C-Terminal Residue on the Phase Behavior and Properties of β-Sheet Forming Self-Assembling Peptide Hydrogels.

Biomacromolecules

September 2025

Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.

This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.

View Article and Find Full Text PDF

Photodegradable nanoparticles with sphere, worm, and vesicle morphologies were synthesized following polymerization induced self-assembly (PISA), incorporating a photoresponsive phenyl vinyl ketone (PVK) block and a nonphoto responsive 2-hydroxypropyl methacrylamide (HPMA) block. The photodegradation of nanoparticles under UV revealed that the initial shapes of sphere and vesicle particles are retained even until 7 h and after 24 h of photo-induced degradation, respectively, despite a significant reduction in molecular weight (M). This could be due to the assembly of degraded PVK fragments in the hydrophobic region, maintaining the relative hydrophilic to hydrophobic ratio.

View Article and Find Full Text PDF

Transglutaminase-catalyzed glycosylation of egg white peptides: Structural modulation and molecular mechanism of umami enhancement via T1R1/T1R3 interactions.

Food Res Int

November 2025

Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China; College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China. Electronic address:

Egg white peptides (EWPs) face significant flavor challenges due to bitterness, limiting their high-value applications. This study prepared egg white glycopeptides (EWGP) through transglutaminase-catalyzed glycosylation to investigate their flavor enhancement effect. Egg white protein was hydrolyzed by neutral protease and covalently bound to glucosamine under the mediation of transglutaminase to obtain EWGP.

View Article and Find Full Text PDF