Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carbon nanotubes (CNTs) are often regarded as semi-rigid, all-carbon polymers. However, unlike conventional polymers that can form 3D networks such as hydrogels or elastomers through crosslinking in solution, CNTs have long been considered non-crosslinkable under mild conditions. This perception changed with our recent discovery of UV-defluorination-driven direct crosslinking of CNTs in solution. In this study, we further investigate the thermal stability of UV-defluorination-driven crosslinked CNTs, revealing that they are metastable and decompose more readily than either pristine or fluorinated CNTs under Raman laser irradiation. Using Raman spectroscopy under controlled laser power, we examined both single-walled and multi-walled fluorinated CNTs. The results demonstrate that UV-defluorinated CNTs exhibit reduced thermal stability compared to their pristine or untreated fluorinated counterparts. This instability is attributed to the strain on the intertube crosslinking bonds resulting from the curved carbon lattice of the linked CNTs. The metallic CNTs in the crosslinked CNT networks decompose and revert to their pristine state more readily than the semiconducting ones. The inherent instability of crosslinked CNTs leads to combustion at temperatures approximately 100 °C lower than those required for non-crosslinked fluorinated CNTs. This property positions crosslinked CNTs as promising candidates for applications where mechanically robust, lightweight materials are needed, along with feasible post-use removal options.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397521PMC
http://dx.doi.org/10.3390/nano14171464DOI Listing

Publication Analysis

Top Keywords

cnts
12
crosslinked cnts
12
fluorinated cnts
12
stability uv-defluorination-driven
8
uv-defluorination-driven crosslinked
8
carbon nanotubes
8
thermal stability
8
crosslinked
5
crosslinked carbon
4
nanotubes raman
4

Similar Publications

Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.

View Article and Find Full Text PDF

Nanocellulose-assisted construction of conductive gradient hydrogel for remote actuated and self-sensing soft actuator.

Carbohydr Polym

November 2025

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, N

Hydrogel actuators show tremendous promise for applications in soft robots and artificial muscles. Nevertheless, developing a stretchable hydrogel actuator combining remote actuation and real-time signal feedback remains a challenge. Herein, a light-responsive hydrogel actuator with self-sensing function is fabricated by employing a localized immersion strategy to incorporate polyacrylamide (PAM) hydrogel network into semi-interpenetrating carbon nanotube/2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber/poly(N-isopropylacrylamide) (CNT/TOCN/PNIPAM) hydrogel.

View Article and Find Full Text PDF

Developing efficient, sustainable, earth-abundant, cost-effective electrocatalysts is extremely challenging. Cobalt-iron-layered double hydroxide nanosheets (Co-Fe-LDH NSs) hybridized with carbon nanotubes (CNTs) lead to anchors Co-Fe-LDH-CNTs (CFC) self-assembly with a mesoporous morphology, expanded surface area, fast charge transfer kinetics, and high electrical conductivity. The resultant anchored CFC nanohybrid is highly active for electrocatalytic oxygen evolution reaction (OER), showing a lower overpotential of 221 and 313 mV at a current density of 10 and 25 mA cm, respectively, compared to pristine Co-Fe-LDH (339 and 391 mV), showcasing the significant role of CNTs in improving the electrocatalytic performance of pristine Co-Fe-LDH.

View Article and Find Full Text PDF

Ru/RuOx/CNTs heterostructured materials are synthesized using an in situ method. The Ru─RuOx heterostructure facilitates active hydrogen dissociation, leading to excellent catalytic performance in nitrate reduction, with ammonia as the primary product at low overpotentials. The process achieves Faradaic efficiencies of ammonia exceeding 90% and a production rate of 1.

View Article and Find Full Text PDF

Enhanced Thermal Transport in Aramid Composite Films via Intrinsic Interfacial Interaction and Synergistic Orientation.

ACS Appl Mater Interfaces

September 2025

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.

The heat dissipation of high-power chips places higher demands on the thermal conductivity () of polymer-based thermal interface materials (TIMs) to ensure the stable operation of the chips. However, the interfacial thermal resistance (ITR) greatly restricts further improvement. Herein, 1D multiwalled carbon nanotubes modified with carboxyl (CNTs-) were introduced to the aramid matrix via blade coating, and a strategy of the intrinsic interfacial interaction and synergistic orientation was ingeniously adopted to enhance thermal transport.

View Article and Find Full Text PDF