Enhanced Thermal Transport in Aramid Composite Films via Intrinsic Interfacial Interaction and Synergistic Orientation.

ACS Appl Mater Interfaces

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The heat dissipation of high-power chips places higher demands on the thermal conductivity () of polymer-based thermal interface materials (TIMs) to ensure the stable operation of the chips. However, the interfacial thermal resistance (ITR) greatly restricts further improvement. Herein, 1D multiwalled carbon nanotubes modified with carboxyl (CNTs-) were introduced to the aramid matrix via blade coating, and a strategy of the intrinsic interfacial interaction and synergistic orientation was ingeniously adopted to enhance thermal transport. Results indicate that the strong hydrogen bonding, π-π interactions between CNTs- and aramid, and the in-plane consistent orientation of the CNTs- play a synergistic strengthening role in the interface and bulk thermal transport. The in-plane () of the obtained aramid composite with 40 wt % CNTs- (ACNTs--40%) reaches 12.6 W/mK, about 420% higher than that of pure aramid. The range of variation of with temperature is approximately within 0.8 mm/s, demonstrating excellent thermally conductive stability. The phonon transmission spectra and ITR of CNTs-/aramid, CNTs/aramid, and CNTs/EVA were calculated through theoretical simulation, further verifying the effectiveness of enhancing heat transport through strong interfacial interaction. The strategy of intrinsic interfacial interaction and synergistic orientation has promoted the development of TIMs, providing an effective measure for the heat dissipation of high-power electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5c13294DOI Listing

Publication Analysis

Top Keywords

interfacial interaction
16
thermal transport
12
intrinsic interfacial
12
interaction synergistic
12
synergistic orientation
12
aramid composite
8
heat dissipation
8
dissipation high-power
8
strategy intrinsic
8
aramid
5

Similar Publications

Unveiling additive effects on molecular packing and charge transfer in organic solar cells: an AIMD and DFT study.

Phys Chem Chem Phys

September 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China.

Additive assisted strategies play a crucial role in optimizing the morphology and improving the performance of organic solar cells (OSCs), yet the molecular-level mechanisms remain unclear. Here, we employ molecular dynamics (AIMD) and density functional theory (DFT) to elucidate the influence of typical additives of 1,8-diiodooctane (DIO) and 3,5-dichlorobromobenzene (DCBB) on molecular packing, electronic structures, and charge transport. It can be observed that both additives can enhance the stacking properties of the donor and acceptor materials, yet they have different effects on the local electrostatic environment.

View Article and Find Full Text PDF

Emulsion formation presents a significant operational challenge in oil production, necessitating the continuous development of novel and effective demulsification methods. However, the lack of a fundamental understanding of the mechanisms that regulate the formation of these emulsions significantly complicates this process. In this study, we systematically investigated the influence of Ca ions on crude oil emulsions.

View Article and Find Full Text PDF

The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.

View Article and Find Full Text PDF

The construction of strong metal-support interactions (SMSI) is an effective strategy to enhance and control heterogeneous catalysts. However, conventional methods require pre-synthesized metal-loaded catalysts, followed by SMSI formation via high-temperature treatment under oxidative/reductive atmospheres, adsorbate-mediated treatment, and photo-treatment, adding complexity to catalyst synthesis and hindering continuous interfacial tuning. In this work, a "photobreeding" method is employed to treat ZnCdS, leveraging the UV-induced photochromic reaction of ZnS to generate metallic Zn at room temperature, while CdS remains inert.

View Article and Find Full Text PDF

Multifaceted characterization of lactoferrin and (-)-epigallocatechin-3-gallate (EGCG) interactions: development of the pickering emulsions for microencapsulated functional foods.

Food Res Int

November 2025

Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China.

In this study, we explored the application of lactoferrin-(-)-epigallocatechin-3-gallate (LF-EGCG) complex with rapeseed, soybean, walnut, peanut and sesame oil for the preparation of Pickering emulsions and its spray-dried microcapsules. Spectroscopy and molecular docking revealed that LF-EGCG binds via hydrogen bonds, hydrophobic interactions, and van der Waals forces. Structural analysis demonstrated that 0.

View Article and Find Full Text PDF