Publications by authors named "Prashant D Sawant"

Developing efficient, sustainable, earth-abundant, cost-effective electrocatalysts is extremely challenging. Cobalt-iron-layered double hydroxide nanosheets (Co-Fe-LDH NSs) hybridized with carbon nanotubes (CNTs) lead to anchors Co-Fe-LDH-CNTs (CFC) self-assembly with a mesoporous morphology, expanded surface area, fast charge transfer kinetics, and high electrical conductivity. The resultant anchored CFC nanohybrid is highly active for electrocatalytic oxygen evolution reaction (OER), showing a lower overpotential of 221 and 313 mV at a current density of 10 and 25 mA cm, respectively, compared to pristine Co-Fe-LDH (339 and 391 mV), showcasing the significant role of CNTs in improving the electrocatalytic performance of pristine Co-Fe-LDH.

View Article and Find Full Text PDF

We demonstrate drug release properties from hydroethanolic formulations as a function of the drug's lipophilicity (logP), solvent lipophilicity and drug-polymer interactions, for the first time. A hydrophilic polymer, hydroxypropyl cellulose (HPC), provides the non-Fickian slower release of the lipophilic drug, lidocaine (logP=2.6) and the burst (Fickian) release of hydrophilic drug, lidocaine hydrochloride (logP View Article and Find Full Text PDF

Atomic force microscopy based power spectrum density (PSD) method along with conventional methods such as line, grain height, root mean square (rms) roughness, is used to probe complex Hg-Au interactions i.e. the amalgamation of smooth gold nanostructures (Au-ns) and partial dissolution of irregular edges of interconnecting Au-ns networks due to Hg.

View Article and Find Full Text PDF

The rapid development of genomics and proteomics requires accelerated improvement of the microarrays density, multiplexing, readout capabilities and cost-effectiveness. The bead arrays are increasingly attractive because of their self-assembly-based fabrication, which alleviates many problems of top-down microfabrication. Here we present a simple, reliable, robust and modular technique for the fabrication of bead microarrays, which combines the directed assembling of beads in microstructures and PDMS-based replica molding.

View Article and Find Full Text PDF

One of the stumbling blocks in the formation of a thermoresponsive cell-hydrogel hybrid (TCH) is the efficient incorporation of cells in thermoresponsive hydrogels (TH) using traditional top-down (i.e., cells penetrate in the pre-set gels from top surface) approach.

View Article and Find Full Text PDF

Microemulsions (MEs) are increasingly being used as nano-reactors for the formation and synthesis of nanoparticles or quantum dots (QDs). In this paper, we study the capacity of aqueous nanoreactors of AOT microemulsions for the formation of ultrasmall semiconductor QDs by fixing w = ([H2O]/[AOT]) and varying the concentration of CdS up to 100 mM. The CdS QDs in the MEs are evaluated using UV-vis spectroscopy, XRD, TEM, and light scattering.

View Article and Find Full Text PDF

The architecture of three-dimensional interconnecting self-organized nanofiber networks from separate needlelike crystals of L-DHL (lanosta-8,24-dien-3beta-ol:24,25-dihydrolanosterol = 56:44) in di-isooctylphthalate has been achieved for the first time, on the basis of the completely new concept of branching creation by additives (branching promoters). [In this work, an additive, ethylene/vinyl acetate copolymer (EVACP), is used at a concentration of several 10 ppm.] We demonstrate that this novel technique enables us to produce previously unknown self-supporting supramolecular functional materials with tailormade micro- or nanostructures, possessing significantly modified macroscopic properties, by utilizing materials thus far considered to be "useless".

View Article and Find Full Text PDF