98%
921
2 minutes
20
Interfacial polymerization has emerged as a robust method for fabricating task-specific polyamide (PA) membranes. However, the limited microporosity of highly cross-linked PA membranes constrains their effectiveness in gas separation applications. Herein, we introduce an ionic liquid (IL)-regulated interfacial polymerization process to fabricate polyamide nanofilms incorporating kinked tetrakis (4-aminophenyl) methane monomers. In situ ultraviolet-visible spectroscopy demonstrates that the diffusion of 1,3,5-benzenetricarbonyl trichloride (TMC) toward the interface increases with the IL/HO ratio, leading to the formation of a more compact membrane with a higher cross-linking degree. The PA-TAM7/3-60 min membrane exhibits a CO permeance of 29.8 GPU and a CO/CH selectivity of 109, exceeding the 2008 Robeson upper bond. Additionally, the highly cross-linked structure imparts the membranes with notable plasticization resistance. Mixed-gas tests (CO/CH = 50/50, v/v) reveal that the PA-TAM7/3-60 min membrane experiences only a 2% reduction in CO permeance and a 10% decrease in CO/CH selectivity at a CO partial pressure of 300 PSIG, compared to its performance at 30 PSIG. The ease of tuning membrane structure and gas separation performance, along with its excellent plasticization resistance, underscores the potential of these PA membranes for task-specific gas separations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c10941 | DOI Listing |
Anal Chem
September 2025
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.
Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.
View Article and Find Full Text PDFLangmuir
September 2025
Federal University of São Paulo, Laboratory of Hybrid Materials, Diadema, São Paulo 09913-030, Brazil.
This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.
View Article and Find Full Text PDFFood Res Int
November 2025
Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China. Electronic address:
This study employed high-pressure microfluidization (HPM) to facilitate the Maillard reaction between quinoa protein (QP) and dextran (DX), systematically examining the effects of various pressures on the conjugate's physicochemical properties. Fourier transform infrared spectroscopy confirmed the formation of QP-DX conjugates, characterized by a new peak at 1149 cm (covalent CN bond). Secondary and tertiary structure analyses revealed that HPM-assisted Maillard reaction partially unfolded QP molecules, enhancing conformational flexibility and interfacial properties.
View Article and Find Full Text PDFNat Commun
September 2025
Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
The synthesis of thin crystalline two-dimensional polymers (2DPs) typically relies on reversible dynamic covalent reactions. While substantial progress has been made in solution-based and interfacial syntheses, achieving 2DPs through irreversible carbon-carbon coupling reactions remains a formidable challenge. Herein, we present an on-liquid surface (a mixture of N,N-dimethylacetamide and water, DMAc-HO) synthesis method for constructing diyne-linked 2DP (DY2DP) crystals via Glaser coupling, assisted by a perfluoro-surfactant (PFS) monolayer.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Chemical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Republic of Korea.
Commercial lithium-ion batteries using organic solvent-based liquid electrolytes (LEs) face safety issues, including risks of fire and explosion. As a safer alternative, solid-state electrolytes are being extensively explored to replace these organic solvent-based LEs. Among various solid electrolyte options, polymer electrolytes offer advantages such as flexibility and ease of processing.
View Article and Find Full Text PDF