Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The latest development in perovskite solar cell (PSC) technology has been significantly influenced by advanced techniques aimed at passivating surface defects. This work presents a new approach called thermal imprinting-assisted ion exchange passivation (TIAIEP), which delivers a different approach to conventional solution-based methods. TIAIEP focuses on addressing surface imperfections in solid-state films by using a passivator that promotes ion exchange specifically at the defect sites within the perovskite layer. By adjusting the time and temperature of the TIAIEP process, we achieve substantial enhancement in the creation of a compositional gradient within the films. This optimization slows the cooling rate of hot carriers, leading to minimizing charge recombination and improving the device performance. Remarkably, devices treated with TIAIEP achieve a 22.29% power conversion efficiency and show outstanding stability, with unencapsulated PSCs maintaining 91% of their original efficiency after over 2000 h of storage and 90% efficiency after 1200 h of constant illumination. These results highlight TIAIEP's effectiveness in mitigating surface defects, improving both the photoelectric and stability performance of PSCs, and indicating significant potential for large-scale application in perovskite film passivation, promoting the widespread adoption of this technology.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c08538DOI Listing

Publication Analysis

Top Keywords

ion exchange
12
perovskite solar
8
solar cell
8
thermal imprinting-assisted
8
imprinting-assisted ion
8
exchange passivation
8
surface defects
8
improving perovskite
4
cell performance
4
performance stability
4

Similar Publications

The surfaces of 1D layered lepidocrocite-structured titanates (1DLs) are negatively charged due to an oxygen-to-titanium atomic ratio >2. This, and their layered structure, allow for facile ion exchange and high colloidal stability, demonstrated by ζ-potentials of ≈ -85 mV at their unadjusted pH of ≈10.4.

View Article and Find Full Text PDF

2D Active Filler Modified Porous Polymer Network for Stabilizing Zn Anode Under Harsh Conditions.

Small

September 2025

National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China.

Artificial porous polymer coatings are promising for alleviating the side reactions and dendrite growth on Zn anodes. Nevertheless, the low ion transport ability constrains their application under harsh conditions such as thin Zn foil, high current density, and high depth of discharge (DOD). Herein, a 2D active filler is introduced to optimize the Zn migration in porous polymer coating.

View Article and Find Full Text PDF

Controlling Chloride Crossover in Bipolar Membrane Water Electrolysis.

ACS Electrochem

September 2025

Department of Material Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Bipolar membranes (BPMs) are increasingly recognized as a promising electrolyte option for water electrolysis, attributable to their distinctive properties derived from the membrane's layered structure, which consists of an anion exchange (AEL) and a cation exchange layer (CEL). This study investigates four different BPMs and the influence they have on the performance of a water electrolysis cell under two different feed configurations: (1) a symmetric deionized water feed to both anode and cathode compartments and (2) an asymmetric feed with a 0.5 mol/L NaCl catholyte feed and a deionized water anolyte feed.

View Article and Find Full Text PDF

A machine learning based dual-energy CT elemental decomposition method and its physical-biological impacts on carbon ion therapy.

Med Phys

September 2025

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China.

Background: Dual-energy computed tomography (DECT) enhances material differentiation by leveraging energy-dependent attenuation properties particularly for carbon ion therapy. Accurate estimation of tissue elemental composition via DECT can improve quantification of physical and biological doses.

Objective: This study proposed a novel machine-learning-based DECT (ML-DECT) method to predict the physical density and mass ratios of H, C, N, O, P, and Ca.

View Article and Find Full Text PDF

Ca Fluxes across Membrane Contact Sites.

Cold Spring Harb Perspect Biol

September 2025

Department of Biomedical Sciences (DSB), University of Padova, Padova 35131, Italy

The calcium ion (Ca) is a pivotal second messenger orchestrating diverse cellular functions, including metabolism, signaling, and apoptosis. Membrane contact sites (MCSs) are critical hubs for Ca exchange, enabling rapid and localized signaling across cell compartments. Well-characterized interfaces, such as those between the endoplasmic reticulum (ER) and mitochondria and ER-plasma membrane (PM), mediate Ca flux through specialized channels.

View Article and Find Full Text PDF