Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Matcha shows promise for diabetes, obesity, and gut microbiota disorders. Studies suggest a significant link between gut microbiota, metabolites, and obesity. Thus, matcha may have a positive impact on obesity by modulating gut microbiota and metabolites. This study used 16S rDNA sequencing and untargeted metabolomics to examine the cecal contents in mice. By correlation analysis, we explored the potential mechanisms responsible for the positive effects of matcha on obesity. The results indicated that matcha had a mitigating effect on the detrimental impacts of a high-fat diet (HFD) on multiple physiological indicators in mice, including body weight, adipose tissue weight, serum total cholesterol (TC), and low-density lipoprotein (LDL) levels, as well as glucose tolerance. Moreover, it was observed that matcha had an impact on the structural composition of gut microbiota and gut metabolites. Specifically, matcha was able to reverse the alterations in the abundance of certain obesity-improving bacteria, such as , , and , as well as the abundance of obesity-promoting bacteria , induced by a HFD. Furthermore, matcha can influence the levels of metabolites, including formononetin, glutamic acid, pyroglutamic acid, and taurochenodeoxycholate, within the gastrointestinal tract. Additionally, matcha enhances caffeine metabolism and the HIF-1 signaling pathway in the KEGG pathway. The results of the correlation analysis suggest that formononetin, theobromine, 1,3,7-trimethyluric acid, and Vitamin C displayed negative correlation with both the obesity phenotype and microbiota known to exacerbate obesity, while demonstrating positive correlations with microbiota that alleviated obesity. However, glutamic acid, pyroglutamic acid, and taurochenodeoxycholate had the opposite effect. In conclusion, the impact of matcha on gut metabolites may be attributed to its modulation of the abundance of , , , and within the gastrointestinal tract, thereby potentially contributing to the amelioration of obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381447PMC
http://dx.doi.org/10.1016/j.crfs.2024.100823DOI Listing

Publication Analysis

Top Keywords

gut microbiota
20
microbiota metabolites
12
matcha
10
obesity
9
obesity modulating
8
modulating gut
8
metabolites matcha
8
correlation analysis
8
gut metabolites
8
glutamic acid
8

Similar Publications

Background: Several clinical studies have demonstrated that Helicobacter pylori (Hp) infection may exacerbate the progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD); however, the underlying mechanisms remain unclear. This study aims to investigate the characterization of the gastric microbiome and metabolome in relation to the progression of MASLD induced by Hp infection.

Methods: We established a high-fat diet (HFD) obese mouse model, both with and without Hp infection, to compare alterations in serum and liver metabolic phenotypes.

View Article and Find Full Text PDF

This review article describes recent research advances in the relationship between spinal cord injury (SCI) and the gut microbiota and each other's inflammatory response. SCI is a serious neurological disease that directly damages physiological function. Recent studies have shown that SCI significantly affected the composition and function of the gut microbiota, and even caused intestinal inflammation.

View Article and Find Full Text PDF

Mendelian Randomization Study: The Impact of Gut Microbiota on Survival in HR+ Breast Cancer Patients Under Different Treatment Regimens Through the Modulation of Immune Cell Phenotypes.

Clin Breast Cancer

August 2025

Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, School of Pharmacy, Fujian Medical University, Fuzhou, China. Electronic address:

Background: Emerging evidence suggests that the gut microbiota (GM) may influence the progression of breast cancer by modulating immune responses. Given the vast diversity of GM and immune cell phenotypes, this study aimed to utilize the most advanced and comprehensive data to explore the causal relationships among the GM, immune cell phenotypes, and survival rates in hormone receptor-positive (HR+) breast cancer patients under different treatment regimens.

Methods: We investigated the causal relationships between the GM, immune cell phenotypes, and survival rates in HR+ breast cancer patients treated with 11 distinct therapeutic strategies using Mendelian randomization.

View Article and Find Full Text PDF

Advances in Understanding the Pathogenesis of Clostridioides difficile Infection.

Infect Dis Clin North Am

September 2025

Department of Microbiology, Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, 303B Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.

Clostridioides difficile infection (CDI) remains a significant cause of infectious colitis in the United States. Susceptibility to CDI is associated with perturbation of the gut microbiota, the indigenous microbes in the gastrointestinal tract. Upon colonization, the production of toxins and the ability to produce spores for environmental dissemination contribute to C difficile pathogenicity.

View Article and Find Full Text PDF

Metabolic and microbial responses of Ceratitis capitata to essential oil-based nano-emulsions: Implications for pest management.

Pestic Biochem Physiol

November 2025

Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones científicas, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain. Electronic address:

Essential oils (EOs) are a promising alternative to conventional pesticides, but some challenges like high volatility, poor water solubility, and rapid degradation limit their use in Integrated Pest Management (IPM). To overcome these limitations, this study aimed to develop garlic, eucalyptus, and clove EO-based nano-emulsions (EO-NEs) in a bait treatment format through the high-pressure microfluidization technique and investigated the biological activities against Ceratitis capitata. In addition, the adverse effects of the most promising nano-emulsion were evaluated towards a non-target parasitoid Anagaspis daci.

View Article and Find Full Text PDF