Enhanced Second-Harmonic Generation in Thin-Film Lithium Niobate Circular Bragg Nanocavity.

Nano Lett

State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Second-order nonlinearity gives rise to many distinctive physical phenomena, e.g., second-harmonic generation, which play an important role in fundamental science and various applications. Lithium niobate, one of the most widely used nonlinear crystals, exhibits strong second-order nonlinear effects and electro-optic properties. However, its moderate refractive index and etching sidewall angle limit its capability in confining light into nanoscales, thereby restricting its application in nanophotonics. Here, we exploit nanocavities formed by second-order circular Bragg gratings, which support resonant anapole modes, to achieve a 42 000-fold enhanced second-harmonic generation in thin-film lithium niobate. The nanocavity exhibits a record-high normalized conversion efficiency of 1.21 × 10 cm/GW under the pump intensity of 1.9 MW/cm. Besides, we also show s- and p-polarization-independent second-harmonic generation in elliptical Bragg nanocavities. This work could inspire the study of nonlinear optics at the nanoscale on thin-film lithium niobate, as well as other novel photonic platforms.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c03286DOI Listing

Publication Analysis

Top Keywords

second-harmonic generation
16
lithium niobate
16
thin-film lithium
12
enhanced second-harmonic
8
generation thin-film
8
circular bragg
8
generation
4
lithium
4
niobate
4
niobate circular
4

Similar Publications

Direct Deep-UV Second-Harmonic Generation in Disordered Χ-Modulated Ferroelectric Crystals.

Adv Mater

September 2025

Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, P. R. China.

The generation of coherent deep-ultraviolet (DUV) radiation via nonlinear frequency conversion remains a major scientific and technological challenge in modern optics. To date, only a very limited number of nonlinear optical (NLO) crystals-such as KBBF, ABF, and quartz-have been experimentally demonstrated to support measurable direct second-harmonic generation (SHG) at wavelengths of 177 nm or shorter. There is a pressing need to develop alternative materials or strategies that enable efficient frequency conversion in the DUV region.

View Article and Find Full Text PDF

Tracking phase transitions of tactoids in sulfated cellulose nanocrystals using second harmonic generation microscopy.

Carbohydr Polym

November 2025

Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium. Electronic address:

Cellulose nanocrystals (CNCs) have emerged as promising candidates for chiroptical functional materials due to their ability to form cholesteric liquid crystals with tunable periodicity. The quality of the final cholesteric phase is influenced by the nucleation, growth and coalescence mechanism of the initial droplets, known as tactoids. Current research focuses on understanding the size and morphological transformations of these tactoids, to gain deeper insights into their dynamic behavior and, in turn, to better control the final properties of novel photonic materials.

View Article and Find Full Text PDF

Second-order nonlinear optical processes are fundamental to photonics, spectroscopy, and information technologies, with material platforms playing a pivotal role in advancing these applications. Here, we demonstrate the exceptional nonlinear optical properties of the van der Waals crystal 3R-MoS, a rhombohedral polymorph exhibiting high second-order optical susceptibility ( ) and remarkable second-harmonic generation (SHG) capabilities. By designing high quality factor resonances in 3R-MoS metasurfaces supporting quasi-bound states in the continuum (qBIC), we first demonstrate SHG efficiency enhancement exceeding 10.

View Article and Find Full Text PDF

Shape Memory Collagen Scaffolds Sustain Large-Scale Cyclic Loading.

ACS Mater Lett

September 2025

Preventive and Restorative Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Natural biopolymer hydrogels often suffer from relatively low moduli and an inability to maintain structure and mechanics under cyclic loading, limiting their utility in dynamic mechanical environments. Here, a cross-linked collagen cryogel scaffold was fabricated by precompression to densify the network. Following lyophilization, the porous scaffolds sustained >90% axial compressive strain with 200 cycles.

View Article and Find Full Text PDF

Enhanced magnetic second-harmonic generation in an ultra-compact plasmonic nanocavity.

Light Sci Appl

September 2025

Department of Materials Science and Engineering, Centre for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China.

Observation of the second-harmonic generation (SHG) from subwavelength metallic structures is often hindered by the interrelations of higher-order multipolar contributions. In particular, the magnetic Lorentz contribution to SHG is often neglected due to the ineffective magnetic field enhancement in electrically resonant structures. Here, we demonstrate a strong Lorentz-driven SHG output at the plasmon-induced magnetic dipolar resonance in inversion-symmetry-broken plasmonic nanocavities.

View Article and Find Full Text PDF