98%
921
2 minutes
20
Observation of the second-harmonic generation (SHG) from subwavelength metallic structures is often hindered by the interrelations of higher-order multipolar contributions. In particular, the magnetic Lorentz contribution to SHG is often neglected due to the ineffective magnetic field enhancement in electrically resonant structures. Here, we demonstrate a strong Lorentz-driven SHG output at the plasmon-induced magnetic dipolar resonance in inversion-symmetry-broken plasmonic nanocavities. We observe experimentally tenfold enhancement in the SHG intensity when the magnetic dipole mode is excited, with polarization-resolved measurements confirming the significant role of the hydrodynamic Lorentz-driven second-order nonlinear response. The enhancement originates from a significant spatial overlap between the electric and magnetic fields within the nanometer-scale cavity gaps. Our findings outline the critical role played by the resonant Lorentz-driven optically induced magnetic nonlinearities in metallic nanocavities, and it paves the way towards developing highly efficient nanoscale nonlinear photonic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411620 | PMC |
http://dx.doi.org/10.1038/s41377-025-01962-3 | DOI Listing |
Adv Mater
September 2025
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, P. R. China.
The generation of coherent deep-ultraviolet (DUV) radiation via nonlinear frequency conversion remains a major scientific and technological challenge in modern optics. To date, only a very limited number of nonlinear optical (NLO) crystals-such as KBBF, ABF, and quartz-have been experimentally demonstrated to support measurable direct second-harmonic generation (SHG) at wavelengths of 177 nm or shorter. There is a pressing need to develop alternative materials or strategies that enable efficient frequency conversion in the DUV region.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium. Electronic address:
Cellulose nanocrystals (CNCs) have emerged as promising candidates for chiroptical functional materials due to their ability to form cholesteric liquid crystals with tunable periodicity. The quality of the final cholesteric phase is influenced by the nucleation, growth and coalescence mechanism of the initial droplets, known as tactoids. Current research focuses on understanding the size and morphological transformations of these tactoids, to gain deeper insights into their dynamic behavior and, in turn, to better control the final properties of novel photonic materials.
View Article and Find Full Text PDFNpj Nanophoton
September 2025
Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
Second-order nonlinear optical processes are fundamental to photonics, spectroscopy, and information technologies, with material platforms playing a pivotal role in advancing these applications. Here, we demonstrate the exceptional nonlinear optical properties of the van der Waals crystal 3R-MoS, a rhombohedral polymorph exhibiting high second-order optical susceptibility ( ) and remarkable second-harmonic generation (SHG) capabilities. By designing high quality factor resonances in 3R-MoS metasurfaces supporting quasi-bound states in the continuum (qBIC), we first demonstrate SHG efficiency enhancement exceeding 10.
View Article and Find Full Text PDFACS Mater Lett
September 2025
Preventive and Restorative Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Natural biopolymer hydrogels often suffer from relatively low moduli and an inability to maintain structure and mechanics under cyclic loading, limiting their utility in dynamic mechanical environments. Here, a cross-linked collagen cryogel scaffold was fabricated by precompression to densify the network. Following lyophilization, the porous scaffolds sustained >90% axial compressive strain with 200 cycles.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Department of Materials Science and Engineering, Centre for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China.
Observation of the second-harmonic generation (SHG) from subwavelength metallic structures is often hindered by the interrelations of higher-order multipolar contributions. In particular, the magnetic Lorentz contribution to SHG is often neglected due to the ineffective magnetic field enhancement in electrically resonant structures. Here, we demonstrate a strong Lorentz-driven SHG output at the plasmon-induced magnetic dipolar resonance in inversion-symmetry-broken plasmonic nanocavities.
View Article and Find Full Text PDF