Coronary Plaque Characterization with T1-weighted MRI and Near-Infrared Spectroscopy to Predict Periprocedural Myocardial Injury.

Radiol Cardiothorac Imaging

From the Departments of Cardiology (K.I., D.I., H.O., R.K.) and Radiological Technology (I.S.), Ijinkai Takeda General Hospital, Kyoto, Japan; Division of Cardiology (H.M., S.H., H.T., M.N., T.S.) and Department of Radiological Technology (T.H.), Showa University School of Medicine, 1-5-8 Hatanodai,

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose To clarify the predominant causative plaque constituent for periprocedural myocardial injury (PMI) following percutaneous coronary intervention: erythrocyte-derived materials, indicated by a high plaque-to-myocardium signal intensity ratio (PMR) at coronary atherosclerosis T1-weighted characterization (CATCH) MRI, or lipids, represented by a high maximum 4-mm lipid core burden index (maxLCBI) at near-infrared spectroscopy intravascular US (NIRS-IVUS). Materials and Methods This retrospective study included consecutive patients who underwent CATCH MRI before elective NIRS-IVUS-guided percutaneous coronary intervention at two facilities. PMI was defined as post-percutaneous coronary intervention troponin T values greater than five times the upper reference limit. Multivariable analysis was performed to identify predictors of PMI. Finally, the predictive capabilities of MRI, NIRS-IVUS, and their combination were compared. Results A total of 103 lesions from 103 patients (median age, 72 years [IQR, 64-78]; 78 male patients) were included. PMI occurred in 36 lesions. In multivariable analysis, PMR emerged as the strongest predictor ( = .001), whereas maxLCBI was not a significant predictor ( = .07). When PMR was excluded from the analysis, maxLCBI emerged as the sole independent predictor ( = .02). The combination of MRI and NIRS-IVUS yielded the largest area under the receiver operating curve (0.86 [95% CI: 0.64, 0.83]), surpassing that of NIRS-IVUS alone (0.75 [95% CI: 0.64, 0.83]; = .02) or MRI alone (0.80 [95% CI: 0.68, 0.88]; = .30). Conclusion Erythrocyte-derived materials in plaques, represented by a high PMR at CATCH MRI, were strongly associated with PMI independent of lipids. MRI may play a crucial role in predicting PMI by offering unique pathologic insights into plaques, distinct from those provided by NIRS. Coronary Plaque, Periprocedural Myocardial Injury, MRI, Near-Infrared Spectroscopy Intravascular US © RSNA, 2024.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375432PMC
http://dx.doi.org/10.1148/ryct.230339DOI Listing

Publication Analysis

Top Keywords

near-infrared spectroscopy
12
periprocedural myocardial
12
myocardial injury
12
coronary intervention
12
catch mri
12
mri
9
coronary plaque
8
mri near-infrared
8
percutaneous coronary
8
erythrocyte-derived materials
8

Similar Publications

Far-Field Excitation of a Photonic Flat Band via a Tailored Anapole Mode.

Phys Rev Lett

August 2025

Xiamen University, College of Physical Science and Technology, School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Ultrafast Laser Technology and Applica

The photonic flat band, defined by minimal dispersion and near-zero group velocity, has facilitated significant advances in optical technologies. The practical applications of flat bands, such as enhanced light-matter interactions, require efficient coupling to far-field radiation. However, achieving controlled coupling between flat bands and their corresponding localized modes with far-field radiation remains challenging and elusive.

View Article and Find Full Text PDF

Atom-precise coinage metal nanoclusters for near-infrared emission: excited-state dynamics and mechanisms.

Chem Soc Rev

September 2025

State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

Understanding the excited-state dynamics of atomically precise coinage metal nanoclusters (CMNCs) is pivotal for elucidating their photoluminescence (PL) mechanisms and rationally tuning emission properties-particularly in the near-infrared (NIR) region, where CMNC-based nanomaterials have tremendous potential for biomedical and optoelectronic applications. This review presents a systematic and comprehensive account of recent advances in investigating the excited-state dynamics and PL mechanisms of NIR-emitting CMNCs with atomic precision, leveraging the synergistic integration of time-resolved spectroscopy and time-dependent density functional theory (TD-DFT) calculations. Distinct from previous reviews that offer a broad survey of CMNC properties, the present review focuses specifically on intrinsic factors, highlighting molecular vibrational features and electronic structure modulation as key determinants of NIR emission.

View Article and Find Full Text PDF

Vibrational signature of 1B+u and hot 2A-g excited states of carotenoids revisited by femtosecond stimulated Raman spectroscopy.

Phys Chem Chem Phys

September 2025

The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany, Czech Republic.

The significance of carotenoids in biological systems cannot be overstated. Their functionality largely arises from unique excited-state dynamics, where photon absorption promotes the molecule to the optically allowed 1B+u state (conventionally S), which rapidly decays to the optically forbidden 2A-g state (S). While the vibrational signature of the S state is well established, that of the initial S state has remained elusive.

View Article and Find Full Text PDF

Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.

Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.

View Article and Find Full Text PDF

This study aimed to create multifunctional nanoparticles (NPs), specifically AS1411@MPDA-Len-Cy5.5 (AMLC), for the purpose of developing effective strategies for treating hepatocellular carcinoma (HCC) through targeted therapy and photothermal therapy (PTT). The study involved synthesizing mesoporous polydopamine (MPDA)-NPs, loading lenvatinib (Len) and Cy5.

View Article and Find Full Text PDF