98%
921
2 minutes
20
Various isomers have been developed to regulate the morphology and reduce defects in state-of-the-art perovskite solar cells (PSCs). To insight the structure-function-effect correlations for the isomerization of thiourea derivatives on the performance of the PSCs, we developed two thiourea derivatives [(3,5-dichlorophenyl)amino]thiourea (AT) and N-(3,5-dichlorophenyl)hydrazinecarbothioamide (HB). Supported by experimental and calculated results, it was found that AT can bind with undercoordinated Pb defect through synergistic interaction between N1 and C=S group with a defect formation energy of 1.818 eV, which is much higher than that from the synergistic interaction between two -NH- groups in HB and perovskite (1.015 eV). Moreover, the stronger interaction between AT and Pb regulates the crystallization process of perovskite film to obtain a high-quality perovskite film with high crystallinity, large grain size, and low defect density. Consequently, the AT-treated FACsPbI device engenders an efficiency of 25.71 % (certified as 24.66 %), which is greatly higher than control (23.74 %) and HB-treated FACsPbI devices (25.05 %). The resultant device exhibits a remarkable stability for maintaining 91.0 % and 95.2 % of its initial efficiency after aging 2000 h in air condition or tracking at maximum power point for 1000 h, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202410378 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Advanced Materials and Devices Metrology Division, CSIR-National Physical Laboratory, K.S. Krishnan Marg, Pusa Road, New Delhi 110012, India.
Among all types of tandem solar cells (TSCs), the two-terminal (2T) monolithic silicon-perovskite TSCs have achieved an efficiency of approximately 34.85% and show potential for commercialization because they align with well-established silicon-based solar cell technology. This review focuses on 2T monolithic silicon-perovskite TSCs, discussing their deployment along with related technical and scientific issues.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
Recently, halide perovskite materials have attracted significant research interest in photoelectrochemical cells as promising photoabsorbers due to their superior optoelectronic properties. However, their instability under environmental conditions remains a major obstacle to the development of stable water-splitting devices. This review thoroughly examines the growing array of encapsulation strategies that have accelerated the integration of perovskite materials into water-splitting systems.
View Article and Find Full Text PDFAdv Mater
September 2025
Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
Sequential deposition technique is widely used to fabricate perovskite films with large grain size in perovskite solar cells (PSCs). Residual lead halide (PbI) in the perovskite film tends to be decomposed into metallic lead (Pb) under long-term heating or light soaking. Here, a chiral levetiracetam (LEV) dopant containing α-amide and pyrrolidone groups is introduced into the PbI precursor solution.
View Article and Find Full Text PDFAdv Mater
September 2025
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.
Establishing a low-resistance perovskite/ITO contact using self-assembled molecules (SAMs) is crucial for efficient hole transport in perovskite solar cells (PSCs) without a pre-deposited hole-transporting layer. However, SAMs at the buried interface often encounter issues like nonuniform distribution and molecular aggregation during the extrusion process, leading to significant energy loss. Herein, a molecular hybrid bridging strategy by incorporating a novel small molecule is proposed, (2-aminothiazole-4-yl)acetic acid (ATAA), featuring a thiazole ring and carboxylic acid group, along with the commonly used SAM, 4-(2,7-dibromo-9,9-dimethylacridin-10(9H)-yl)butyl)phosphonic acid (DMAcPA), into the perovskite precursor to synergistically optimize the buried interface.
View Article and Find Full Text PDFACS Omega
September 2025
Dept. of Electrical and Electronic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
Perovskite solar cells (PSCs) are rapidly advancing due to their high power conversion efficiencies (PCEs) and low fabrication costs. However, their commercialization is hindered by lead toxicity and the use of expensive materials, such as Spiro-OMeTAD and gold electrodes. This study presents a comprehensive SCAPS-1D simulation-based analysis of 14 perovskite absorber materials, spanning both Pb-based and lead-free compounds, under a unified device architecture using low-cost, nontoxic components: ZnO as the electron transport material (ETM), PEDOT:PSS + WO as a dual hole transport material, and nickel as the back contact.
View Article and Find Full Text PDF