Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Synthetic Aperture Radar (SAR) is renowned for its all-weather and all-time imaging capabilities, making it invaluable for ship target recognition. Despite the advancements in deep learning models, the efficiency of Convolutional Neural Networks (CNNs) in the frequency domain is often constrained by memory limitations and the stringent real-time requirements of embedded systems. To surmount these obstacles, we introduce the Split_ Composite method, an innovative convolution acceleration technique grounded in Fast Fourier Transform (FFT). This method employs input block decomposition and a composite zero-padding approach to streamline memory bandwidth and computational complexity via optimized frequency-domain convolution and image reconstruction. By capitalizing on FFT's inherent periodicity to augment frequency resolution, Split_ Composite facilitates weight sharing, curtailing both memory access and computational demands. Our experiments, conducted using the OpenSARShip-4 dataset, confirm that the Split_ Composite method upholds high recognition precision while markedly enhancing inference velocity, especially in the realm of large-scale data processing, thereby exhibiting exceptional scalability and efficiency. When juxtaposed with state-of-the-art convolution optimization technologies such as Winograd and TensorRT, Split_ Composite has demonstrated a significant lead in inference speed without compromising the precision of recognition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281057PMC
http://dx.doi.org/10.3390/s24144476DOI Listing

Publication Analysis

Top Keywords

split_ composite
20
target recognition
8
convolution acceleration
8
composite method
8
split_
5
composite
5
composite radar
4
radar target
4
recognition
4
method
4

Similar Publications

Towards durable photocatalytic seawater splitting: design strategies and challenges.

Chem Commun (Camb)

September 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070

Photocatalytic seawater splitting (PSWS), which utilizes abundant solar and ocean resources, is one of the most promising technologies for sustainable hydrogen production. However, the complex composition of seawater significantly limits the durability and activity of photocatalysts. In this review, we first identify the primary factors that contribute to photocatalyst deactivation during PSWS, including chloride induced corrosion and loss of active sites, and light shielding caused by precipitation of metal cation salts.

View Article and Find Full Text PDF

Low-Dimensional Semiconducting Silver (Germanium, Tin) Polyphosphides - Incommensurately Modulated Derivates of the HgPbP Structure Type.

Inorg Chem

September 2025

Synthesis and Characterization of Innovative Materials, TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching b. München 85748, Germany.

Semiconductors with one-dimensional (1D) substructures are promising for next-generation optical and electronic devices due to their directional transport and flexibility. Representatives of this class include HgPbP-type materials. This study investigates the related semiconductors AgGeP and AgSnP.

View Article and Find Full Text PDF

Composite endpoints amalgamate multiple clinical outcomes into a single measure, offering efficiency gains in clinical trials through increased event rates and reduced sample sizes, thus accelerating clinical development and regulatory approval. However, employing composite endpoints introduces complexities into health technology assessments (HTAs), particularly in economic modeling, due to the varying clinical significance and cost implications of the components. In this paper, we explore best modeling practice for HTAs that are based on clinical trials that employ composite endpoints.

View Article and Find Full Text PDF

Proton transfer plays an important role in both hydrogen and oxygen evolution reactions during electrocatalytic water splitting to produce green hydrogen. However, directly adapting the conventional proton/deuterium kinetic isotope effect to study proton transfer in heterogeneous electrocatalytic processes is challenging. Here we propose using the shift in the Tafel slope between protic and deuteric electrolytes, or the Tafel slope isotope effect, as an effective probe of proton transfer characteristics.

View Article and Find Full Text PDF

Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).

View Article and Find Full Text PDF