High Stability Hypha-Like Core-Shell Nanostructure by In Situ Induced Phase Inversion for Zinc Metal Batteries.

Small

State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanomaterials are widely used in many fields for their unique physical and chemical properties and especially demonstrate irreplaceability in energy storage systems. In this paper, a novel composite of copper sulfide with hypha-like core-shell nano-structure is synthesized by in situ phase inversion method, which serves as high stability negative electrode materials of zinc-ion batteries (ZIBs). The unique structure facilitates efficient electron and ion transport, enhances the kinetics of electrochemical reactions, and effectively suppresses the undesired expansion and decomposition of transition metal compounds. As a result, the half battery exhibits high specific capacity (250.2 mAh g at 0.1 A g), reliable rate performance, and cycle stability (98.3 mAh g at 1 A g after 500 cycles). Additionally, when assembled with ZnMnO positive to form a full battery, it demonstrates good cycling capacity at an intermediate current density of 2 A g, while maintaining excellent structural stability over 5,000 cycles (61% retention).

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202403984DOI Listing

Publication Analysis

Top Keywords

high stability
8
hypha-like core-shell
8
phase inversion
8
stability hypha-like
4
core-shell nanostructure
4
nanostructure situ
4
situ induced
4
induced phase
4
inversion zinc
4
zinc metal
4

Similar Publications

Herein, 1,3,5-benzenetricarboxylate (BTC) intercalation and oxygen vacancy engineering are proposed to enhance the electrochemical performance of layered double hydroxide (LDH) nanosheets. The optimized LDH exhibits a remarkable capacity of 426 mAh g at 3 A g and 70% capacity retention after 15 000 cycles, attributed to improved ion transport, abundant active sites, and structural stability.

View Article and Find Full Text PDF

Although improving the charging cutoff voltage is an effective strategy to increase its capacity, LiCoO ("LCO") undergoes rapid capacity decay due to severe structural and interface degradations at high voltages. Herein, we proposed a multifunctional surface modification by coating nano-sized entropy materials (Li-La-Ti-Zr-Co-O, Nano-MEO). Nano-MEO rivets were constructed on the surface of LCO, which stabilized the fragile surface.

View Article and Find Full Text PDF

High-entropy spinel (FeCoNiMnCr)O nanoparticles supported on carbon nanotubes for enhanced electrochemical seawater oxidation.

Chem Commun (Camb)

September 2025

Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.

High-performance, low-cost electrocatalysts are essential for freshwater-independent seawater electrolysis. We design a SWCNT-supported (FeCoNiMnCr)O high-entropy spinel oxide by a hydrothermal method and air-firing, where the conductive network enhances charge transfer and active site exposure. The catalyst achieves 282 mV@10 mA cm with 100 h stability in alkaline seawater.

View Article and Find Full Text PDF

Background: Perforation of artery causing bleeding is a rare but serious complication of percutaneous coronary intervention (PCI), with potentially life-threatening consequences. Prompt recognition and management are crucial, particularly in high-risk patients or complex procedures. Coils are essential tools for sealing perforated or ruptured vessels, preventing further haemorrhage and stabilising the patient.

View Article and Find Full Text PDF

Lipid nanoparticles: Composition, formulation, and application.

Mol Ther Methods Clin Dev

June 2025

Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.

Lipid nanoparticles (LNPs) are lead non-viral vectors for delivering nucleic acids. LNPs can efficiently encapsulate nucleic acids, protect them from degradation, enhance cellular uptake and induce endosome escape, which show high transfection efficiency and low immunogenicity. In this review, we first introduce the LNP components, highlighting their critical roles in encapsulation, stability, delivery efficiency, and tissue tropism.

View Article and Find Full Text PDF