98%
921
2 minutes
20
Nanomaterials are widely used in many fields for their unique physical and chemical properties and especially demonstrate irreplaceability in energy storage systems. In this paper, a novel composite of copper sulfide with hypha-like core-shell nano-structure is synthesized by in situ phase inversion method, which serves as high stability negative electrode materials of zinc-ion batteries (ZIBs). The unique structure facilitates efficient electron and ion transport, enhances the kinetics of electrochemical reactions, and effectively suppresses the undesired expansion and decomposition of transition metal compounds. As a result, the half battery exhibits high specific capacity (250.2 mAh g at 0.1 A g), reliable rate performance, and cycle stability (98.3 mAh g at 1 A g after 500 cycles). Additionally, when assembled with ZnMnO positive to form a full battery, it demonstrates good cycling capacity at an intermediate current density of 2 A g, while maintaining excellent structural stability over 5,000 cycles (61% retention).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202403984 | DOI Listing |
Chem Commun (Camb)
September 2025
Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
Herein, 1,3,5-benzenetricarboxylate (BTC) intercalation and oxygen vacancy engineering are proposed to enhance the electrochemical performance of layered double hydroxide (LDH) nanosheets. The optimized LDH exhibits a remarkable capacity of 426 mAh g at 3 A g and 70% capacity retention after 15 000 cycles, attributed to improved ion transport, abundant active sites, and structural stability.
View Article and Find Full Text PDFNanoscale
September 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
Although improving the charging cutoff voltage is an effective strategy to increase its capacity, LiCoO ("LCO") undergoes rapid capacity decay due to severe structural and interface degradations at high voltages. Herein, we proposed a multifunctional surface modification by coating nano-sized entropy materials (Li-La-Ti-Zr-Co-O, Nano-MEO). Nano-MEO rivets were constructed on the surface of LCO, which stabilized the fragile surface.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.
High-performance, low-cost electrocatalysts are essential for freshwater-independent seawater electrolysis. We design a SWCNT-supported (FeCoNiMnCr)O high-entropy spinel oxide by a hydrothermal method and air-firing, where the conductive network enhances charge transfer and active site exposure. The catalyst achieves 282 mV@10 mA cm with 100 h stability in alkaline seawater.
View Article and Find Full Text PDFEur J Case Rep Intern Med
August 2025
Hanoi Heart Hospital, Hanoi, Vietnam.
Background: Perforation of artery causing bleeding is a rare but serious complication of percutaneous coronary intervention (PCI), with potentially life-threatening consequences. Prompt recognition and management are crucial, particularly in high-risk patients or complex procedures. Coils are essential tools for sealing perforated or ruptured vessels, preventing further haemorrhage and stabilising the patient.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2025
Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
Lipid nanoparticles (LNPs) are lead non-viral vectors for delivering nucleic acids. LNPs can efficiently encapsulate nucleic acids, protect them from degradation, enhance cellular uptake and induce endosome escape, which show high transfection efficiency and low immunogenicity. In this review, we first introduce the LNP components, highlighting their critical roles in encapsulation, stability, delivery efficiency, and tissue tropism.
View Article and Find Full Text PDF